Answer:
b Different amounts of food samples were used.
Explanation:
The mass of the two samples needs to be the same in order for the test to be accurate.
Hello. This question is incomplete. The full question is:
"Consider the following reaction. 2NO(g) + 2H2(g) → N2(g) + 2H2O(g)
A proposed reaction mechanism is: NO(g) + NO(g) N2O2(g) fast N2O2(g) + H2(g) → N2O(g) + H2O(g) slow N2O(g) + H2(g) → N2(g) + H2O(g) fast
What is the rate expression? A. rate = k[H2] [NO]2 B. rate = k[N2O2] [H2] C. rate = k[NO]2 [H2]2 D. rate = k[NO]2 [N2O2]2 [H2]"
Answer:
A. rate = k[H2] [NO]2
Explanation:
A reaction mechanism is a term used to describe a set of phases that make up a chemical reaction. In these phases a detailed sequence of each step is shown, composed of several complementary reactions, which occur during a chemical reaction.
These mechanisms are directly related to chemical kinetics and allow changes in reaction rates to be observed in advance.
Reaction rate, on the other hand, refers to the speed at which chemical reactions occur.
Based on this, we can observe through the reaction mechanism shown in the question above, that the action "k [H2] [NO] 2" would have no changes in the reaction rate.
Electrons are responsible for the transfer of charge.
Answer:
No, in science their meanings are not the same as their everyday meanings.
Explanation:
In Science, Precision and Accuracy are defined as,
Accuracy:
Accuracy is the value which is closest to the known or standard value.
Precision:
While, Precision is the value of closeness of two measured values to each other.
Example:
Let suppose in Chemistry Lab you weight an object as 50 g. While the actual weight of that object is 30 g. It means your reading is not accurate.
On second measurement you find that the object weight is 31 g. This time your reading is not precise.
One-
The 6 is the only significant figure.