Answer:
[NH₃] = 14.7 mol/L
Explanation:
28 wt% is a type of concentration that indicates that 28 g of ammonia is contained in 100 g of solution.
Let's determine the amount of ammonia:
28 g . 1 mol / 17.03g = 1.64 moles of NH₃
You need to consider that, when you have density's data it is always referred to solution:
Mass of solution is 100 g, let's find out the volume
0.90 g/mL = 100 g /V
V = 100 g / 0.90mL/g → 111.1 mL
We convert the volume to L → 111.1 mL . 1 L/1000mL = 0.1111 L
mol/L = 1.64 mol/0.1111L → 14.7 M
mol/L = M → molarity a sort of concentration that indicates the moles of solute in 1L of solution
The answer is a change in internal energy causes work to be done and heat to flow into the system.
<u>Explanation:</u>
- The first law of thermodynamics is a similar version of the law of conservation of energy where the energy can neither be created nor be destroyed, it can be transformed from one form to the other.
- It also defines that the work is done and heat flowing into the system is due to the change in internal energy. The sum of all energy including kinetic and potential energy except the displaced energy to the surrounding is known as internal energy.
- ΔU represents the change in internal energy of the system, Q represents the net heat transferred into the system, and W represents the net work done by the system. So +ve Q adds energy to the system and =ve W takes energy from the system. Thus ΔU=Q−W.
Answer:
solvents dissolve in liquids