Answer:
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Explanation:
The strategy here is to account for the species at equilibrium given that the concentration of [NO]=0.062M at equilibrium is known and the quantities initially present and its stoichiometry.
2NO(g) + 2H2(g) ⇒ N2(g) + 2H2O(g)
i mol 0.10 0.050 0.10
c mol -0.038 -0.038 +0019 +0.038
e mol 0.062 0.012 00.019 0.057
Since the volume of the vessel is 1.0 L, the concentrations in molarity are:
[NO] = 0.062 M
[H2] = 0.012 M
[N2] = 0.019 M
[H2O] = 0.057 M
Positron emission = emission of a positron and a neutrino when a
proton is convert into a neutron. The total number of particles in the
nucleus doesn't change, -1 proton +1 neutron
It's a spontaneous reaction for some nucleus.
eg:
Positron = e+
Neutrino=ve
O-15 --> N-15 + e+ +ve
Electron
capture= A nucleus absorb an electron while a proton is convert in a
neutron and emit a neutrino. The total number of particles in the
nucleus doesn't change, -1 proton +1 neutron
eg:
Al-26 +e- --> Mg-26 + ve
Electron
capture and positron emission are two mechanisms to explain the decay
of some unstable isotopes. Electron capture is usually observed when the
energy difference between the initial and final state is low. Mainly
because of the larger amount of kinetic energy need for the expulsion
two particles with the positron emission mechanism.
Answer:
An ionic bond is the bonding between a non-metal and a metal, that occurs when charged atoms (ions) attract.
Explanation:
Here I put the function of Iconic Bond.
- <em>Ionic bonds form so that the outermost energy level of atoms are filled. Ion. an atom or group of atoms that bring out a positive or negative electric charge as a result of having lost or gained one or more electrons.</em>
<em>Therefore, I hope this helps!</em>
Answer:
9.1 mol
Explanation:
The balanced chemical equation of the reaction is:
CO (g) + 2H2 (g) → CH3OH (l)
According to the above balanced equation, 2 moles of hydrogen gas (H2) are needed to produce 1 mole of methanol (CH3OH).
To convert 36.7 g of hydrogen gas to moles, we use the formula;
mole = mass/molar mass
Molar mass of H2 = 2.02g/mol
mole = 36.7/2.02
mole = 18.17mol
This means that if;
2 moles of H2 reacts to produce 1 mole of CH3OH
18.17mol of H2 will react to produce;
18.17 × 1 / 2
= 18.17/2
= 9.085
Approximately to 1 d.p = 9.1 mol of methanol (CH3OH).