The following
are the answers to the questions presented:
a. The joules of energy required to run a 100W light bulb for one day is 8640000J
b. The amount of coals that has to be burned to light that light bulb for one day is 0.96kg
The solution would
be like this for this specific problem:
<span>P=<span>W/s</span>→W=Pt=100W1day <span><span>24h/</span><span>1day </span></span><span><span>3600s/</span><span>1h</span></span>=8640000J</span>
<span>W=<span>30/100</span>wm→m=<span><span>100W/</span><span>30w</span></span>=<span><span>100×8640000J/</span><span>30×30×<span>10in thepowerof6 </span><span>J/<span>kg</span></span></span></span>=0.96kg</span>
<span>I am hoping that
these answers have satisfied your queries and it will be able to help you in
your endeavors, and if you would like, feel free to ask another question.</span>
A person standing on the moon watching the earth rotate
Answer:
the stove energy went into heating water is 837.2 kJ.
Explanation:
given,
mass of water = 2000 grams
initial temperature = 0° C
Final temperature = 100° C
specific heat of water (c) = 4.186 joule/gram
energy = m c Δ T
= 2000 × 4.186 × (100° - 0°)
= 837200 J
= 837.2 kJ
hence, the stove energy went into heating water is 837.2 kJ.
Answer:
g
Explanation:
if an object is thrown upward or at any angle, the acceleration acting on that object is the same as acceleration due to gravity which always acts towards the vertically downwards direction because there is no acceleration or the force acting on the object in horizontal direction.
Thus, the acceleration is same as acceleration due to gravity g.