Answer:
x = 1.018 m
Explanation:
given,
height of man = 190 cm
= 1.9 m
scale reading on left = 450 N
scale reading on the right = 390 N
Let center of gravity of man be x distance from feet, feet is on right side.
For system to be in equilibrium moment about center should be equal to zero.
∑M = 0
now,
450(1.9 - x ) - 390 × x = 0
450(1.9 - x ) = 390 × x
855 - 450 x = 390 x
840 x = 855

x = 1.018 m
hence, point of center of gravity from feet is equal to x = 1.018 m
Answer:
False
Explanation:
The second you let go its gonna release kinetic energy that's why it's potential
Answer: a) 73.41 10^-12 F; b)4.83* 10^3 N/C; c) 3.66 *10^3 N/C
Explanation: To solve this problem we have to consider the following: The Capacity= Charge/Potential Difference
As we know the capacity is value that depend on the geometry of the capacitor, in our case two concentric spheres.
So Potential Difference between the spheres is given by:
ΔV=-
Where E = k*Q/ r^2
so we have 
then
Vb-Va=k*Q(1/b-1/a)=kQ (ab/b-a)
Finally using C=Q/ΔV=ab/(k(b-a))
To caclulate the electric firld we first obtain the charge
Q=ΔV*C=120 V*73.41 10^-12 F=8.8 10^-9 C
so E=KQ/r^2 for both values of r
r=12.8 cm ( in meters)
r2=14.7 cm
E(r1)=4.83* 10^3 N/C
E(r2)=3.66 *10^3 N/C
Answer:
Single-atom negative ions end in “-ide”, so binary compounds always have this ending. Polyatomic compounds usually end in “-ate” or “-ite”. FORMULAS: Write the positive ion, with its charge, then the negative ion, with its charge.
Explanation:
hope it helps, please mark as brainliest
Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass
× Acceleration
= Mass
× Acceleration
so
Mass
/ Mass
= Acceleration
/ Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass
/ Mass
= 1 / 1.26
Mass
/ Mass
= 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]