Answer:
Bone
Explanation:
Diagnostic radiology include the use of non-invasive imaging scans to diagnose a patient.
The voltages used in diagnostic tubes range from roughly 20 kV to 150 kV and thus the highest energies of the X-ray photons range from roughly 20 keV to 150 keV.
The tests and equipment used sometimes involves low doses of radiation to create highly detailed images of an area.
Answer:

Explanation:
Since the hoop is rolling on the floor so its total kinetic energy is given as

now for pure rolling condition we will have

also we have

now we will have


now by work energy theorem we can say



now solve for final speed

Answer:
The pressure drop predicted by Bernoulli's equation for a wind speed of 5 m/s
= 16.125 Pa
Explanation:
The Bernoulli's equation is essentially a law of conservation of energy.
It describes the change in pressure in relation to the changes in kinetic (velocity changes) and potential (elevation changes) energies.
For this question, we assume that the elevation changes are negligible; so, the Bernoulli's equation is reduced to a pressure change term and a change in kinetic energy term.
We also assume that the initial velocity of wind is 0 m/s.
This calculation is presented in the attached images to this solution.
Using the initial conditions of 0.645 Pa pressure drop and a wind speed of 1 m/s, we first calculate the density of our fluid; air.
The density is obtained to be 1.29 kg/m³.
Then, the second part of the question requires us to calculate the pressure drop for a wind speed of 5 m/s.
We then use the same formula, plugging in all the parameters, to calculate the pressure drop to be 16.125 Pa.
Hope this Helps!!!
Since g is constant, the force the escaping gas exerts on the rocket will be 10.4 N
<h3>
What is Escape Velocity ?</h3>
This is the minimum velocity required for an object to just escape the gravitational influence of an astronomical body.
Given that the velocity of a 0.25kg model rocket changes from 15m/s [up] to 40m/s [up] in 0.60s. The gravitational field intensity is 9.8N/kg.
To calculate the force the escaping gas exerts of the rocket, let first highlight all the given parameters
- Mass (m) of the rocket 0.25 Kg
- Initial velocity u = 15 m/s
- Final Velocity v = 40 m/s
- Gravitational field intensity g = 9.8N/kg
The force the gas exerts of the rocket = The force on the rocket
The rate change in momentum of the rocket = force applied
F = ma
F = m(v - u)/t
F = 0.25 x (40 - 15)/0.6
F = 0.25 x 41.667
F = 10.42 N
Since g is constant, the force the escaping gas exerts on the rocket is therefore 10.4 N approximately.
Learn more about Escape Velocity here: brainly.com/question/13726115
#SPJ1