The velocity is changing.
Answer:
The density of the mixture is 0.55kg/m^3
Explanation:
P = 1bar = 100kN/m^2, T = 0°C = 273K, n = 0.4+0.6 = 1mole
PV = nRT
V = nRT/P = 1×8.314×273/100 = 22.70m^3
Mass of N2 = 0.4×28 = 11.2kg
Mass of H2 = 0.6×2 = 1.2kg
Mass of mixture = 11.2 + 1.2 = 12.4kg
Density of mixture = mass/volume = 12.4/22.7 = 0.55kg/m^3
Answer: 1175 J
Explanation:
Hooke's Law states that "the strain in a solid is proportional to the applied stress within the elastic limit of that solid."
Given
Spring constant, k = 102 N/m
Extension of the hose, x = 4.8 m
from the question, x(f) = 0 and x(i) = maximum elongation = 4.8 m
Work done =
W = 1/2 k [x(i)² - x(f)²]
Since x(f) = 0, then
W = 1/2 k x(i)²
W = 1/2 * 102 * 4.8²
W = 1/2 * 102 * 23.04
W = 1/2 * 2350.08
W = 1175.04
W = 1175 J
Therefore, the hose does a work of exactly 1175 J on the balloon
By Newton's second law, we have

So, in order to give a 0.15kg body an acceleration of 40m/s^2, you need a force of

Answer:
Conduction occurs when a substance is heated, particles will gain more energy, and vibrate more. These molecules then bump into nearby particles and transfer some of their energy to them. This then continues and passes the energy from the hot end down to the colder end of the substance.
Explanation:
pls make me brainliest