Answer:
can you send the answer choices?
Explanation:
Answer:
pH = 11.216.
Explanation:
Hello there!
In this case, according to the ionization of ammonia in aqueous solution:

We can set up its equilibrium expression in terms of x as the reaction extent equal to the concentration of each product at equilibrium:
![Kb=\frac{[NH_4^+][OH^-]}{[NH_3]} \\\\1.80x10^{-5}=\frac{x*x}{0.150-x}](https://tex.z-dn.net/?f=Kb%3D%5Cfrac%7B%5BNH_4%5E%2B%5D%5BOH%5E-%5D%7D%7B%5BNH_3%5D%7D%20%5C%5C%5C%5C1.80x10%5E%7B-5%7D%3D%5Cfrac%7Bx%2Ax%7D%7B0.150-x%7D)
However, since Kb<<<1 we can neglect the x on bottom and easily compute it via:

Which is also:
![[OH^-]=1.643x10^{-3}M](https://tex.z-dn.net/?f=%5BOH%5E-%5D%3D1.643x10%5E%7B-3%7DM)
Thereafter we can compute the pOH first:

Finally, the pH turns out:

Regards!
Answer:
combustion of methane gass will take place when the flame is yellow
120.38 g/mol is the answer
Answer:
The pressure inside the container is 6.7 atm
Explanation:
We have the ideal gas equation: P x V = n x R x T
whereas, P (pressure, atm), V (volume, L), n (mole, mol), R (ideal gas constant, 0.082), T (temperature, Kelvin)
Since the container is evacuated and then sealed, the volume of the body of gas is the volume of the container.
So we can calculate the pressure by
P = n x R x T / V
where as,
n = 41.1 g / 44 g/mol = 0.934 mol
Hence P = 0.934 x 0.082 x 298 / 3.4 L = 6.7 atm