Answer:
(a) FN = m (g -
)
(b) vmin = 17.146 m/s
Explanation:
The radius of the arc is
r = 30m
The normal force acting on the car form the highest point is
FN = m (g -
)
If the normal force become 0 we have
m (g -
) = 0
or
g -
= 0
This way, when FN = 0, then v = vmin, so
g -
= 0
vmin =
= ![\sqrt[.]{9.8 m/s^{2} * 30m } = 17.146 m/s](https://tex.z-dn.net/?f=%5Csqrt%5B.%5D%7B9.8%20m%2Fs%5E%7B2%7D%20%2A%2030m%20%7D%20%3D%2017.146%20m%2Fs)
Answer: The five general characteristics of the nearest stars are the brightness, color, surface temperature, size, and mass.
Explanation:
The mass of a star can be described as being measured with our sun at 1 solar mass. One star can equal the size of our sun. There is one star named, Rigel, that is bigger than the Earths sun. Each star will vary in its density.
The size of the star, as stated above, can be the size of our sun and sometimes larger. The size is measured by solar radii.
Stars vary in their temp. They range anywhere from -273.15 degrees Celsius to 50,000 K. The temp is based on the Kelvin scale.
The stars brightness are always based on luminosity and magnitude.
The stars colors will vary and is based on the temperature of the surface of the star. Some stars are red in color, white in color, and some even have a bluish color.
The _quamtum mechanical_ model of the atom states that an electron's exact location within an atom can not be determined, but its probable location can be estimated within a three-dimensional region called an atomic orbital and that an electron's properties within an orbital can only be described by a set of mathematical values called a quantum number.
The answer is 12.5 kg because 250N / 20m/s^2
I hope that helped
Part A:
For this part we’re assuming all the kinetic energy of the moving bumper car is converted into elastic potential energy in the spring since the car is brought to rest. Therefore you can find the total kinetic energy to get your answer:
KE = ½ mv^2
KE = ½ (200)(8)^2
KE = 6400 J
Part B:
Now you can use Hooke’s law to find the force:
F = kx
F = (5000)(0.2)
F = 1000 N