1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
EastWind [94]
2 years ago
12

Which best compares radiation and conduction?

Physics
1 answer:
Mamont248 [21]2 years ago
4 0

Answer:

Both transfers thermal energy from warm objects to cooler objects

You might be interested in
Is telekinesis real??? I really wanna start learning it!
Lesechka [4]

Answer:

if you only have to control your chakra and know how to get all your vibes to pass it to objects and it takes time to practice

4 0
3 years ago
Find the quantity of heat needed
krok68 [10]

Answer:

Approximately 3.99\times 10^{4}\; \rm J (assuming that the melting point of ice is 0\; \rm ^\circ C.)

Explanation:

Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

\begin{aligned}m&= 100\; \rm g \times \frac{1\; \rm kg}{1000\; \rm g} \\ &= 0.100\; \rm kg\end{aligned}

The energy required comes in three parts:

  • Energy required to raise the temperature of that 0.100\; \rm kg of ice from (-10\; \rm ^\circ C) to 0\; \rm ^\circ C (the melting point of ice.)
  • Energy required to turn 0.100\; \rm kg of ice into water while temperature stayed constant.
  • Energy required to raise the temperature of that newly-formed 0.100\; \rm kg of water from 0\; \rm ^\circ C to 10\;\ rm ^\circ C.

The following equation gives the amount of energy Q required to raise the temperature of a sample of mass m and specific heat capacity c by \Delta T:

Q = c \cdot m \cdot \Delta T,

where

  • c is the specific heat capacity of the material,
  • m is the mass of the sample, and
  • \Delta T is the change in the temperature of this sample.

For the first part of energy input, c(\text{ice}) = 2100\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (0\; \rm ^\circ C) - (-10\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_1 &= c(\text{ice}) \cdot m(\text{ice}) \cdot \Delta T\\ &= 2100\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 2.10\times 10^{3}\; \rm J\end{aligned}.

Similarly, for the third part of energy input, c(\text{water}) = 4200\; \rm J \cdot kg \cdot K^{-1} whereas m = 0.100\; \rm kg. Calculate the change in the temperature:

\begin{aligned}\Delta T &= T(\text{final}) - T(\text{initial}) \\ &= (10\; \rm ^\circ C) - (0\; \rm ^\circ C) \\ &= 10\; \rm K\end{aligned}.

Calculate the energy required to achieve that temperature change:

\begin{aligned}Q_3&= c(\text{water}) \cdot m(\text{water}) \cdot \Delta T\\ &= 4200\; \rm J \cdot kg \cdot K^{-1} \\ &\quad\quad \times 0.100\; \rm kg \times 10\; \rm K\\ &= 4.20\times 10^{3}\; \rm J\end{aligned}.

The second part of energy input requires a different equation. The energy Q required to melt a sample of mass m and latent heat of fusion L_\text{f} is:

Q = m \cdot L_\text{f}.

Apply this equation to find the size of the second part of energy input:

\begin{aligned}Q_2&= m \cdot L_\text{f}\\&= 0.100\; \rm kg \times 3.36\times 10^{5}\; \rm J\cdot kg^{-1} \\ &= 3.36\times 10^{4}\; \rm J\end{aligned}.

Find the sum of these three parts of energy:

\begin{aligned}Q &= Q_1 + Q_2 + Q_3 = 3.99\times 10^{4}\; \rm J\end{aligned}.

3 0
3 years ago
Which types of electromagnetic waves have wavelengths that are longer than those of visible light but shorter than those of micr
grin007 [14]

Answer:

On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.

Explanation:

add me as brainliest if u the answer is helpful

4 0
3 years ago
Read 2 more answers
a basketball is tossed upwards with a speed of 5.0 m/s What is the maximum height reached by the basketball from its release poi
den301095 [7]

Answer:

1.275 m

Explanation:

Let the maximum height reached be h.

Here initial velocity, u = 5 m/s

Final velocity, V = 0

Use third equation of motion

V^2 = u^2 + 2 g h

0 = 25 - 2 × 9.8 × h

h = 25/19.6 = 1.275 m

3 0
4 years ago
Read 2 more answers
A racquetball strikes a wall with a speed of 30 m/s and rebounds in the opposite direction with a speed of 26 m/s. The collision
Fudgin [204]

Answer:

The average acceleration of the ball during the collision with the wall is a=2,800m/s^{2}

Explanation:

<u>Known Data</u>

We will asume initial speed has a negative direction, v_{i}=-30m/s, final speed has a positive direction, v_{f}=26m/s, \Delta t=20ms=0.020s and mass m_{b}.

<u>Initial momentum</u>

p_{i}=mv_{i}=(-30m/s)(m_{b})=-30m_{b}\ m/s

<u>final momentum</u>

p_{f}=mv_{f}=(26m/s)(m_{b})=26m_{b}\ m/s

<u>Impulse</u>

I=\Delta p=p_{f}-p_{i}=26m_{b}\ m/s-(-30m_{b}\ m/s)=56m_{b}\ m/s

<u>Average Force</u>

F=\frac{\Delta p}{\Delta t} =\frac{56m_{b}\ m/s}{0.020s} =2800m_{b} \ m/s^{2}

<u>Average acceleration</u>

F=ma, so a=\frac{F}{m_{b}}.

Therefore, a=\frac{2800m_{b} \ m/s^{2}}{m_{b}} =2800m/s^{2}

8 0
3 years ago
Other questions:
  • What is the average velocity of a person walking to the store as
    5·2 answers
  • What value must q2 have if the electric potential at point a is to be zero?
    15·1 answer
  • Which of the following is not something that the atmosphere does for us?
    11·2 answers
  • Which direction do the particles of the medium move as compared to the energy in a transverse wave?
    12·1 answer
  • What is meant by physical balance? ​
    8·1 answer
  • A single loop of wire with an area of 0.0900 m2 is in a uniform magnetic field that has an initial value of 3.80 T, is perpendic
    8·1 answer
  • Question 16 1 pts Jessie feels pressured by his parents to get a job. This is an example of the law of?
    11·1 answer
  • Think about the various energy sources such as the sun, fossil fuels, water, wind, and nuclear power. What is the energy source
    9·1 answer
  • What does the word self discipline mean to you
    12·2 answers
  • Glenn shoots an arrow at a 30.0 degree angle. It has a velocity of 65.0 m/s How far will the arrow travel?
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!