Answer:
if you only have to control your chakra and know how to get all your vibes to pass it to objects and it takes time to practice
Answer:
Approximately
(assuming that the melting point of ice is
.)
Explanation:
Convert the unit of mass to kilograms, so as to match the unit of the specific heat capacity of ice and of water.

The energy required comes in three parts:
- Energy required to raise the temperature of that
of ice from
to
(the melting point of ice.) - Energy required to turn
of ice into water while temperature stayed constant. - Energy required to raise the temperature of that newly-formed
of water from
to
.
The following equation gives the amount of energy
required to raise the temperature of a sample of mass
and specific heat capacity
by
:
,
where
is the specific heat capacity of the material,
is the mass of the sample, and
is the change in the temperature of this sample.
For the first part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
Similarly, for the third part of energy input,
whereas
. Calculate the change in the temperature:
.
Calculate the energy required to achieve that temperature change:
.
The second part of energy input requires a different equation. The energy
required to melt a sample of mass
and latent heat of fusion
is:
.
Apply this equation to find the size of the second part of energy input:
.
Find the sum of these three parts of energy:
.
Answer:
On one end of the electromagnetic spectrum are radio waves, which have wavelengths billions of times longer than those of visible light. On the other end of the spectrum are gamma rays, with wavelengths billions of times smaller than those of visible light.
Explanation:
add me as brainliest if u the answer is helpful
Answer:
1.275 m
Explanation:
Let the maximum height reached be h.
Here initial velocity, u = 5 m/s
Final velocity, V = 0
Use third equation of motion
V^2 = u^2 + 2 g h
0 = 25 - 2 × 9.8 × h
h = 25/19.6 = 1.275 m
Answer:
The average acceleration of the ball during the collision with the wall is 
Explanation:
<u>Known Data</u>
We will asume initial speed has a negative direction,
, final speed has a positive direction,
,
and mass
.
<u>Initial momentum</u>

<u>final momentum</u>

<u>Impulse</u>

<u>Average Force</u>

<u>Average acceleration</u>
, so
.
Therefore, 