Ep=mgh
h= Ep/mg
h=57÷(3.3×9.8)
h= 57÷32.34
h= 1.8m
So; the answer is B. 1.8m
Answer:
Moment of the force is 20 N-m.
Explanation:
Given:
Force exerted by the person is, 
Distance of application of force from the point about which moment is needed is, 
Now, we know that, moment of a force 'F' about a point at a perpendicular distance of 'd' from the same point is given as the product of the force and the perpendicular distance.
Therefore, the moment of the force about the end of the claw hammer is given as:

Hence, the moment of the force exerted by the person about the end of the claw hammer is 20 N-m.
Answer:
D
Explanation:
According to newton's 2nd law rate of change of momentum is directly proportional to the force applied on the body. Since, net Force is zero this means momentum did not change or momentum of the body remained constant.
Hence, the system have constant value of momentum. Therefore, option D is correct.
Answer:
The angle between the electric field lines and the equipotential surface is 90 degree.
Explanation:
The equipotential surfaces are the surface on which the electric potential is same. The work done in moving a charge from one point to another on an equipotential surface is always zero.
The electric field lines are always perpendicular to the equipotential surface.
As

For equipotential surface, dV = 0 so

The dot product of two non zero vectors is zero, if they are perpendicular to each other.
Answer:
Option d
The minimum angular separation between two objects that the Hubble Space Telescope can resolve is
.
Explanation:
The resulting image in a telescope that will be gotten from an object is a diffraction pattern instead of a perfect point (point spread function (PSF)).
That diffraction pattern is gotten because the light encounters different obstacles on its path inside the telescope (interacts with the walls and edges of the instrument).
The diffraction pattern is composed by a central disk, called Airy disk, and diffraction rings.
The angular resolution is defined as the minimal separation at which two sources can be resolved one for another, or in other words, when the distance between the two diffraction pattern maxima is greater than the radius of the Airy disk.
The angular resolution can be determined in analytical way by means of the Rayleigh criterion.
(1)
Where
is the wavelength and D is the diameter of the telescope.
Notice that it is necessary to express the wavelength in the same units than the diameter.
⇒
Finally, equation 1 can be used.
Hence, the minimum angular separation between two objects that the Hubble Space Telescope can resolve is
.