Answer:
one or more cells
Explanation:
I need to have 20 characters to submit lol
Well, 0.1 is actually less than 0.7, but I understand what you're asking.
The coefficient of friction describes the relationship between two surfaces
that are sliding by each other. The higher the coefficient of friction is, the
'rougher' the meeting is, and the harder it is for one to slide over the other.
A skate blade against ice has a very low coefficient of friction. Sandpaper
against blue jeans has a high coefficient of friction.
A higher coefficient of friction means that when one thing is sliding over
the other one, friction robs more energy from the motion. It's harder to
push one thing over the other one, and when you let go, the moving one
slows down and stops sooner.
Air resistance is actually an example of friction. It prevents falling things
from falling as fast as they would if there were no air. The coefficient of
friction when something moves through air is pretty low. If the same
object were trying to move through molasses or honey, the coefficient
of friction would be greater.
Friction robs energy, and turns it into heat. So, especially in machinery with
moving parts, we want to make the coefficient of friction between the moving parts
as small as possible. That's what the OIL in a car's engine is for.
Answer:
The magnitude of the magnetic field at the center of the loop is 3.846 x 10⁻⁵ T.
Explanation:
Given;
number of turns of the flat circular loop, N = 18 turns
radius of the loop, R = 15.0 cm = 0.15 m
current through the wire, I = 0.51 A
The magnetic field through the center of the loop is given by;

Where;
μ₀ is permeability of free space = 4π x 10⁻⁷ m/A

Therefore, the magnitude of the magnetic field at the center of the loop is 3.846 x 10⁻⁵ T.
Answer:
0.4 ohms.
Explanation:
From the circuit,
The voltage reading in the voltmeter = voltage drop across each of the parallel resistance.
1/R' = 1/R1+1/R2
R' = (R1×R2)/(R1+R2)
R' = (2.4×1.2)/(2.4+1.2)
R' = 2.88/3.6
R' = 0.8 ohms.
Hence the current flowing through the circuit is
I = V'/R'................ Equation 1
Where V' = voltmeter reading
I = 6/0.8
I = 7.5 A
This is the same current that flows through the variable resistor.
Voltage drop across the variable resistor = 9-6 = 3 V
Therefore, the resistance of the variable resistor = 3/7.5
Resistance = 0.4 ohms.