Answer:
t = 2.68 x 10¹⁴ years
Explanation:
First we need to find the amount of energy that Sun produce in one day.
Energy = Power * Time
Energy of Sun in 1 day = (3.839 x 10²⁶ W)(1 day)(24 hr/1 day)(3600 s/ 1 hr)
Energy of Sun in 1 day = 3.32 x 10³¹ J
Now, the time required by the nuclear power generator, in years, will be:
Energy of power generator = Energy Sun in 1 day = 3.32 x 10³¹ J
3.32 x 10³¹ J = Power * Time
3.32 x 10³¹ J = (3.937 x 10⁹ W)(t years)(365 days/1 year)(24 hr/1 day)(3600 s/ 1 hr)
t = 3.32 x 10³¹ /1.24 x 10¹⁷
<u>t = 2.68 x 10¹⁴ years</u>
Answer:
<em>The change of momentum of the dart is 0.84 Nw.s</em>
Explanation:
<u>Impulse and change of momentum</u>
The change in momentum of an object is its mass times the change in its velocity:

The change in the momentum can also be found by considering the force acting on it. If a force F acts for a time Δt, the change of momentum is given by:

The dart hits a dashboard with a net force of 14 N during the collision and stops in 0.06 seconds. The change of momentum is:

The change of momentum of the dart is 0.84 Nw.s
Answer:
1.2826 x 10^-13 m
Explanation:

Here, k be the kinetic energy and m be the mass
K = 50 KeV = 50 x 1.6 x 10^-16 J = 80 x 10^-16 J
m = 1.67 x 10^-27 kg

λ = 1.2826 x 10^-13 m
In an alpha decay, an atom emits an alpha particle. An alpha particle consists of 2 protons and 2 neutrons: this means that during this kind of decay, the original atom loses 2 protons and 2 neutrons from its nucleus.
This also means that the atomic number Z of the element (the atomic number is the number of protons in the nucleus) decreases by 2 units in the process, while the mass number A (the mass number is the sum of the number of protons and neutrons) decreases by 4 units.
Answer:
The object will travel 675 m during that time.
Explanation:
A body moves with constant acceleration motion or uniformly accelerated rectilinear motion (u.a.r.m) when the path is a straight line, but the velocity is not necessarily constant because there is an acceleration.
In other words, a body performs a u.a.r.m when its path is a straight line and its acceleration is constant. This implies that the speed increases or decreases uniformly.
In this case, the position is calculated using the expression:
x = xo + vo*t + ½*a*t²
where:
- x0 is the initial position.
- v0 is the initial velocity.
- a is the acceleration.
- t is the time interval in which the motion is studied.
In this case:
- x0= 0
- v0= 0 because the object is initially stationary
- a= 6

- t= 15 s
Replacing:
x= 0 + 0*15 s + ½*6
*(15s)²
Solving:
x=½*6
*(15s)²
x=½*6
*225 s²
x= 675 m
<u><em>
The object will travel 675 m during that time.</em></u>