Answer:
The Answer is A Hope I helped you :D Have a Great Day!
Explanation:
V = 60km/h
S=500km
t = ?
v = S/t
t = S/v
t = 500km / 60 km/h
t ≈ 8,33 h
Answer:
a)32.34 N/m
b)10cm
c)1.6 Hz
Explanation:
Let 'k' represent spring constant
'm' mass of the object= 330g =>0.33kg
a) in order to find spring constant 'k', we apply Newton's second law to the equilibrium position 10cm below the release point.
ΣF=kx-mg=0
k=mg / x
k= (0.33 x 9.8)/ 0.1
k= 32.34 N/m
b) The amplitude, A, is the distance from the equilibrium (or center) point of motion to either its lowest or highest point (end points). The amplitude, therefore, is half of the total distance covered by the oscillating object.
Therefore, amplitude of the oscillation is 10cm
c)frequency of the oscillation can be determined by,
f= 1/2π 
f= 1/2π 
f= 1.57
f≈ 1.6 Hz
Therefore, the frequency of the oscillation is 1.6 Hz
<u>Answer:</u>
Positive acceleration is in third hour and negative acceleration is in second hour.
<u>Explanation:</u>
Velocity of car in first hour = 70 mph
Velocity of car in second hour = 60 mph
Velocity of car in third hour = 80 mph
Acceleration = Change in velocity / Time
Acceleration in second hour = (60 - 70)/1 = -10 mph²
Acceleration in third hour = (80 - 60)/1 = 20 mph²
So positive acceleration is in third hour and negative acceleration is in second hour.
Kinetic energy is energy of motion. Pick choice-A, at the top of the swing, where she stops moving & then goes the other way.