(1 - 2x)⁴
(1 - 2x)(1 - 2x)(1 - 2x)(1 - 2x)
[1(1 - 2x) - 2x(1 - 2x)][1(1 - 2x) - 2x(1 - 2x)]
[1(1) - 1(2x) - 2x(1) - 2x(-2x)][1(1) - 1(2x) - 2x(1) - 2x(-2x)]
(1 - 2x - 2x + 4x²)(1 - 2x - 2x + 4x²)
(1 - 4x + 4x²)(1 - 4x + 4x²)
1(1 - 4x + 4x²) - 4x(1 - 4x + 4x²) + 4x²(1 - 4x + 4x²)
1(1) - 1(4x) + 1(4x²) - 4x(1) - 4x(-4x) - 4x(4x²) + 4x²(1) - 4x²(4x) + 4x²(4x²)
1 - 4x + 4x² - 4x + 16x² - 16x³ + 4x² - 16x³ + 16x⁴
1 - 4x - 4x + 4x² + 16x² + 4x² - 16x³ - 16x³ + 16x⁴
1 - 8x + 24x² - 32x³ + 16x⁴
Answer:
5
Step-by-step explanation:
Using the Pythagorean theorem:
a^2 + b^2 = c^2
3^2 + 4^2 = c^2
9 + 16 = c^2
c^2 = 25
c = 5
Answer:
0
Step-by-step explanation:
Answer: k=9/4
Step-by-step explanation: We can do this by finding a number that adds up to 3 when multiplied by 2. The best way to do this is to use ((b^2)/4) which can usually find you the number for a perfect square based on b, which we have. So, 3^2 / 4 =9/4, meaning k=9/4. We can check:
>x^2 +3x +9/4
> (x+3/2)(x+3/2)
Perfect square.