Answer:
1.21 g of Tris
Explanation:
Our solution if made of a solute named Tris
Molecular weight of Tris is 121 g/mol
[Tris] = 100 mM
This is the concentration of solution:
(100 mmoles of Tris in 1 mL of solution) . 1000
Notice that mM = M . 1000 We convert from mM to M
100 mM . 1 M / 1000 mM = 0.1 M
M = molarity (moles of solute in 1 L of solution, or mmoles of solute in 1 mL of solution). Let's determine the mmoles of Tris
0.1 M = mmoles of Tris / 100 mL
mmoles of Tris = 100 mL . 0.1 M → 10 mmoles
We convert mmoles to moles → 10 mmol . 1mol / 1000mmoles = 0.010 mol
And now we determine the mass of solute, by molecular weight
0.010 mol . 121 g /mol = 1.21 g
The Relative Formula Mass of NaH2PO4 is 120 g/mol
Therefore, the number of moles = 6.6/120
= 0.055 moles of NaH2PO4 which is also equal to the number of moles of H2PO4.
[H2PO4-] = Number of moles oof H2PO4-/Volume of the solution in L
= 0.055/ ( 355 ×10^-3)
= 0.155 M
Na2HPO4 undergoes complete dissociation as follows;
Na2HPO4 (aq)= 2Na+ (aq) + HPO4^2- (aq)
1 mole of Na2HPO4 = 142 g/mol
Therefore; number of moles = 8.0/142
= 0.0563 moles
[HPO4 ^-2] is given by no of moles HPO4^2- /volume of the solution in L
= 0.0563/(355×10^-3)
= 0.1586 M
Both H2PO4^2- and HPO4^2- are weak acids the undergoes partial dissociation
Ka of H2PO4- = 6.20 × 10^-8
[H+] =Ka*([H2PO4-]/[HPO4(2-)]
= (6.20 ×10^-8)×(0.155/0.1586)
= 6.059 ×10^-8 M
pH = - log[H+]
= - log (6.059×10^-8)
= 7.218
Answer:
The correct answer is cation. See the explanation below, please.
Explanation:
An atom with a net charge, either positive or negative, is called an ion. In the event that an atom loses an electron (or more), that is, it will have more protons than electrons, and its net charge will be positive, it will be called cation. In the opposite direction, if an atom gains electrons, it will have a negative net charge, called anion.
Answer:
2 Na + 1 Cl2 -> 2 NaCl
Explanation:
The answer is really simple, because if you have 1 nonmetal element that has a subscript of 2, you need to multiply the product and the first reactant by 2 to balance it.
Answer:
d = 0.93 g/cm³
Explanation:
Given data:
Mass of object = 28 g
Volume of object = 3cm×2cm×5cm
density of object = ?
Solution:
Volume of object = 3cm × 2cm ×5cm
Volume of object = 30 cm³
Density of object:
d = m/v
by putting values,
d = 28 g/ 30 cm³
d = 0.93 g/cm³