Answer:
Q= 4.6 × 10⁻³ m³/s
actual velocity will be equal to 8.39 m/s
Explanation:
density of fluid = 900 kg/m³
d₁ = 0.025 m
d₂ = 0.05 m
Δ P = -40 k N/m²
C v = 0.89
using energy equation

under ideal condition v₁² = 0
v₂² = 88.88
v₂ = 9.43 m/s
hence discharge at downstream will be
Q = Av
Q =
Q =
Q= 4.6 × 10⁻³ m³/s
we know that

hence , actual velocity will be equal to 8.39 m/s
Answer:
I think Microsoft Corporation
Answer:
Engineering Controls. The best engineering controls to prevent heat-related illness is to make the work environment cooler and to reduce manual workload with mechanization. A variety of engineering controls can reduce workers' exposure to heat: Air conditioning, Increased general ventilation
, Cooling fans
, Local exhaust ventilation at points of high heat production or moisture, Reflective shields to redirect radiant heat
, Insulation of hot surfaces Elimination of steam leaks
, Cooled seats or benches for rest breaks
, Use of mechanical equipment to reduce manual work, Misting fans that produce a spray of fine water droplets.
Hope this helped you!
Explanation:
Answer:
Both come from the sun
Both are reusable sources
and both don't cause pollution
Explanation:
Answer: parabola
Explanation:
•Parabolic Trajectory:
In conclusion, projectiles travel with a parabolic trajectory due to the fact that the downward force of gravity accelerates them downward from their otherwise straight-line, gravity-free trajectory.