Answer:The Atwood Machine is a device that demonstrates the basic principles of acceleration and dynamics. You'll mostly see Atwood machines in Physics laboratories and classrooms. It consists of two objects with different masses that hang vertically from a frictionless pulley that has a very small, negligible mass.
Explanation:
Answer:
acceleration
acceleration is the rate at which velocity change
i think
Answer:
b. 1.1 m
Explanation:
It is given that the total distance between the masses is equal to the length of the board, which is 3 m. Therefore,

where,
s₁ = distance of fulcrum from left mass
s₂ = distance of fulcrum from right mass
In order to achieve balance, the torque due to both masses must be equal:

s₁ = 1.1 m
Hence, the correct option is:
<u>b. 1.1 m</u>
Answer:
(a) 1.58 V
(b) 0.0126 Wb
(c) 0.0493 V
Solution:
As per the question:
No. of turns in the coil, N = 400 turns
Self Inductance of the coil, L = 7.50 mH =
Current in the coil, i =
A
where

Now,
(a) To calculate the maximum emf:
We know that maximum emf induced in the coil is given by:

![e = L\frac{d}{dt}(1680)cos[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20L%5Cfrac%7Bd%7D%7Bdt%7D%281680%29cos%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
![e = - 7.50\times 10^{- 3}\times \frac{\pi}{0.0250}\times \frac{d}{dt}(1680)sin[\frac{\pi t}{0.0250}]](https://tex.z-dn.net/?f=e%20%3D%20-%207.50%5Ctimes%2010%5E%7B-%203%7D%5Ctimes%20%5Cfrac%7B%5Cpi%7D%7B0.0250%7D%5Ctimes%20%5Cfrac%7Bd%7D%7Bdt%7D%281680%29sin%5B%5Cfrac%7B%5Cpi%20t%7D%7B0.0250%7D%5D)
For maximum emf,
should be maximum, i.e., 1
Now, the magnitude of the maximum emf is given by:

(b) To calculate the maximum average flux,we know that:

(c) To calculate the magnitude of the induced emf at t = 0.0180 s:

