At stp (standard temperature and pressure), the temperature is T=0 C=273 K and the pressure is p=1.00 atm. So we can use the ideal gas law to find the number of moles of helium:

where p is the pressure (1.00 atm), V the volume (20.0 L), n the number of moles, T the temperature (273 K) and

the gas constant. Using the numbers and re-arranging the formula, we can calculate n:
Answer:
1.034m/s
Explanation:
We define the two moments to develop the problem. The first before the collision will be determined by the center of velocity mass, while the second by the momentum preservation. Our values are given by,

<em>Part A)</em> We apply the center of mass for velocity in this case, the equation is given by,

Substituting,


Part B)
For the Part B we need to apply conserving momentum equation, this formula is given by,

Where here
is the velocity after the collision.



They have thick body coverings
Answer:
The magnification is a function of the lenses in the objective and the eyepiece, so the magnification of the two must be multiplied to obtain the total magnification possible. So, for example, if the objective lens was 4X and the eye piece lens was 10X, the total magnification would be 40. (4 x 10 = 40)
Explanation:
Answer:
The speeding up is steady, it is a parabola (a=V*t+(at^2)/2), and give it's an equation in connection to time, at that point, it is conceivable to discover the separation recipe by utilizing more substantial amount mathematics(integrals).
Explanation: