5.610^-26 m is closest to the wavelength of the light.
E=K.E - Work function
hc/λ=1.10-4.65
hc/λ=3.50
λ=hc/3.50
λ=6.626×10 −34J⋅s×3×10^8
λ=5.610^-26 m
Because the relationship between wave frequency and wavelength is inverse, gamma rays have extremely short wavelengths that are only a fraction of the size of atoms, whereas other wavelengths can reach as far as the universe. Regardless of the medium they travel through, electromagnetic radiation's wavelengths are typically expressed in terms of the vacuum wavelength, even though this isn't always stated explicitly.
The wavelength of electromagnetic radiation affects its behavior. The speed of light is equal to wavelength times frequency. Frequency multiplied by the Planck constant equals energy. 1/wavelength is the wave number in cm. Along with the wavelengths of different parts of the electromagnetic spectrum, a rough estimation of the wavelength size is displayed.
To know more about wavelength visit : brainly.com/question/14530620
#SPJ4
Answer:
A compound
Explanation:
A compound is a substance formed when two or more elements are chemically joined
A. Is very attractive. If it's sublimation directly from water vapor in the air to ice on the glass, then yes. But from liquid water mist to water ice, no. Ice is less dense than water. That's why cubes float in your soda. Better leave 'A' alone. . . . D. Ice pellets turn to liquid. That one's good.
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer:
(a) ε = 1373.8.
(b) The wingtip which is at higher potential.
Explanation:
(a) Finding the potential difference between the airplane wingtips.
Given the parameters
wingspan of the plane is = 18.0m
speed of the plane in north direction is = 70.0m/s
magnetic field of the earth is = 1.20μT
The potential difference is given as:
ε = Blv
where ε = potential difference of wingtips
B = magnetic field of earth
l = wingspan of airplane
v = speed of airplane
ε = 1.2 x 18.0 x 63.6
ε = 1373.8
(b) Which wingtip is at higher potential?
The wingtip which is at higher potential.