Answer:
the correct answer is Group of answer choices
Answer:
There are five signs of a chemical change:
Colour Change.
Production of an odour.
Change of Temperature.
Evolution of a gas (formation of bubbles)
Precipitate (formation of a solid).
Answer:
repel
Explanation:
When it comes to electrical forces, "opposites charges attract" while "like charges repel."
There are primarily two types of charges: positive charge and negative charge. The forces they exert upon each other will depend on their charges. The<u> positive charge has an </u><em><u>attractive force</u></em><u> to a negative charge.</u> On the contrary,<u> it has a</u><em><u> repulsive force</u></em><u> to the same positive charge</u>. Thus, it will repel each other.
So this means that <em>opposite charges will draw closer together</em> while<em> like charges will move apart from each other.</em>
Answer:
B) K⁺, Sr²⁺ , O²⁻
Explanation:
Potassium is present in group one. It is alkali metal and have one valance electron.Potassium need to lose its one valance electron and form cation to get complete octet.
That's why it shows K⁺.
Sr is alkaline earth metal. It is present in group two. It has two valance electrons. Strontium needed to lose its two valance electrons and get stable electronic configuration.
When it loses its two valance electrons it shows cation with charge of +2.
Sr²⁺
Oxygen is present in group 16. It has sex valance electrons. It needed two more electrons to complete the octet. That's why oxygen gain two electron and form anion with a charge of -2.
O²⁻
Answer:
The specific heat of the sample unknown metal is approximately 0.45 J/g °C.
General Formulas and Concepts:
<u>Thermodynamics</u>
Specific Heat Formula: 
- <em>m</em> is mass (g)
- <em>c</em> is specific heat capacity (J/g °C)
- Δ<em>T</em> is the change in temperature
Explanation:
<u>Step 1: Define</u>
<em>Identify variables.</em>
<em>m</em> = 112 g
Δ<em>T</em> = 20.0 °C
<em>q</em> = 1004 J
<u>Step 2: Solve for </u><u><em>c</em></u>
- Substitute in variables [Specific Heat Formula]:

- Simplify:

- Isolate <em>c</em>:

- Round [Sig Figs]:

∴ specific heat capacity <em>c</em> is equal to around 0.45 J/g °C.
---
Topic: AP Chemistry
Unit: Thermodynamics