A i belive is the correct answer
1) At tne same temperature and with the same volume, initially the chamber 1 has the dobule of moles of gas than the chamber 2, so the pressure in the chamber 1 ( call it p1) is the double of the pressure of chamber 2 (p2)
=> p1 = 2 p2
Which is easy to demonstrate using ideal gas equation:
p1 = nRT/V = 2.0 mol * RT / 1 liter
p2 = nRT/V = 1.0 mol * RT / 1 liter
=> p1 / p2 = 2.0 / 1.0 = 2 => p1 = 2 * p2
2) Assuming that when the valve is opened there is not change in temperature, there will be 1.00 + 2.00 moles of gas in a volumen of 2 liters.
So, the pressure in both chambers (which form one same vessel) is:
p = nRT/V = 3.0 mol * RT / 2liter
which compared to the initial pressure in chamber 1, p1, is:
p / p1 = (3/2) / 2 = 3/4 => p = (3/4)p1
So, the answer is that the pressure in the chamber 1 decreases to 3/4 its original pressure.
You can also see how the pressure in chamber 2 changes:
p / p2 = (3/2) / 1 = 3/2, which means that the pressure in the chamber 2 decreases to 3/2 of its original pressure.
Answer:
Higher the frequency, the higher the energy
Explanation:
Please help me by marking me brainliest. I'm really close :)
Given:
Ma = 31.1 g, the mass of gold
Ta = 69.3 °C, the initial temperature of gold
Mw = 64.2 g, the mass of water
Tw = 27.8 °C, the initial temperature of water
Because the container is insulated, no heat is lost to the surroundings.
Let T °C be the final temperature.
From tables, obtain
Ca = 0.129 J/(g-°C), the specific heat of gold
Cw = 4.18 J/(g-°C), the specific heat of water
At equilibrium, heat lost by the gold - heat gained by the water.
Heat lost by the gold is
Qa = Ma*Ca*(T - Ta)
= (31.1 g)*(0.129 J/(g-°C)(*(69.3 - T °C)-
= 4.0119(69.3 - T) j
Heat gained by the water is
Qw = Mw*Cw*(T-Tw)
= (64.2 g)*(4.18 J/(g-°C))*(T - 27.8 °C)
= 268.356(T - 27.8)
Equate Qa and Qw.
268.356(T - 27.8) = 4.0119(69.3 - T)
272.3679T = 7738.32
T = 28.41 °C
Answer: 28.4 °C
The answer is a.n=1 because it makes sence