The sample has a new pressure of 274kPa. If at 105 kPa and 275K, a 220 mL sample of helium gas is contained in a cylinder with a moving piston. The sample is pushed till it has a 95.0 mL volume and 310K .
The macroscopic characteristics of ideal gases are related by the ideal gas law (PV = nRT). A gas is considered to be perfect if its particles (a) do not interact with one another and (b) occupy no space (have no volume). Where P= pressure V= volume and T = temperature.
From ideal gas equation
P₁V₁/T₁ =P₂V₂/T₂
105×220÷275 = P₂ ×95÷310
P₂= (105×220×310)÷(275×95)
P2= 7161000/26125
P2 = 274.105 kPa
Hence, the new pressure of helium gas is 274kPa
To know more about Ideas gas equation
brainly.com/question/28837405
#SPJ1
C electron. Electrons have a negative charge!
The easiest way is to use the Law of Gay-Lussac. This law states that there is a direct relation between the temperature in Kelvin of a gas and the pressure.
Then, namig p the pressure and T the temperature in Kelvin and using subscripts for every state:
p/T is constant ==> p_1 / T_1 = p_2/T_2
From which you obtain:
p_2 = [p_1 / T_1] * T_2
T_1 = 33.0 + 273.15 = 306.15 K
T _2 = 21.4 + 273.15 = 294.55 K
p_1 = 1014 kPa
p_2 = 1014 kPa * 294.55 K / 306.15 K = 975.6 kPa
This equation is impossible. NaSO4 is non-existent. Did you mean Na2SO4?