This correct answer would be C
Explanation:
first you have to find accelerarion, it is given that the initial velocity(u) is 3 m/s, distance travelled(s) be 2m finall it came to rest so final velocity be 0m/s
now using the 3rd law of motion
v^2=u^2+2as
0=9+2a2
a= -9/4m/s^2
now force=mass×accelration
=2kg×(-9/4)m/s^2
=4.5 N
4.5 newton force applied on the book!
✌️:)
1)Typically, atom gain or lose electrons to achieve
I believe the correct answer from the choices listed is option C, a stable electron configuration
2)The formation of an ionic bond involves
I believe the correct answer is A, transfer of electrons since it is electrons that is involved in a chemical reaction.
The tank has a volume of
, where
is its height and
is its radius.
At any point, the water filling the tank and the tank itself form a pair of similar triangles (see the attached picture) from which we obtain the following relationship:

The volume of water in the tank at any given time is

and can be expressed as a function of the water level alone:

Implicity differentiating both sides with respect to time
gives

We're told the water level rises at a rate of
at the time when the water level is
, so the net change in the volume of water
can be computed:

The net rate of change in volume is the difference between the rate at which water is pumped into the tank and the rate at which it is leaking out:

We're told the water is leaking out at a rate of
, so we find the rate at which it's being pumped in to be


Answer:
v₀ = 292.3 m / s
Explanation:
Let's analyze the situation, on the one hand we have the shock between the bullet and the block that we can work with at the moment and another part where the assembly (bullet + block) compresses a spring, which we can work with mechanical energy, as the data they give us are Let's start with this second part.
We write the mechanical energy when the shock has passed the bodies
Em₀ = K = ½ (m + M) v²
We write the mechanical energy when the spring is in maximum compression
=
= ½ k x²
Em₀ = 
½ (m + M) v² = ½ k x²
Let's calculate the system speed
v = √ [k x² / (m + M)]
v = √[154 0.83² / (0.012 +0.104)
]
v = 30.24 m / s
This is the speed of the bullet + Block system
Now let's use the moment to solve the shock
Before the crash
p₀ = m v₀
After the crash
= (m + M) v
The system is formed by the bullet and block assembly, so the forces during the crash are internal and the moment is preserved
p₀ = 
m v₀ = (m + M) v
v₀ = v (m + M) / m
let's calculate
v₀ = 30.24 (0.012 +0.104) /0.012
v₀ = 292.3 m / s