I beleive she isnt doing any work due to holding the box motionless, you must be exerting a force in the direction of the box motion. If she is just standing there holding the box their isn't no work becuase no distance has been covered. work = force = distance.
Given data:
* The mass of the baseball is 0.31 kg.
* The length of the string is 0.51 m.
* The maximum tension in the string is 7.5 N.
Solution:
The centripetal force acting on the ball at the top of the loop is,
![\begin{gathered} T+mg=\frac{mv^2}{L}_{} \\ v^2=\frac{L(T+mg)}{m} \\ v=\sqrt[]{\frac{L(T+mg)}{m}} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20T%2Bmg%3D%5Cfrac%7Bmv%5E2%7D%7BL%7D_%7B%7D%20%5C%5C%20v%5E2%3D%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%20%5C%5C%20v%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T%2Bmg%29%7D%7Bm%7D%7D%20%5Cend%7Bgathered%7D)
For the maximum velocity of the ball at the top of the vertical circular motion,
![v_{\max }=\sqrt[]{\frac{L(T_{\max }+mg)}{m}}](https://tex.z-dn.net/?f=v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7BL%28T_%7B%5Cmax%20%7D%2Bmg%29%7D%7Bm%7D%7D)
where g is the acceleration due to gravity,
Substituting the known values,
![\begin{gathered} v_{\max }=\sqrt[]{\frac{0.51(7.5_{}+0.31\times9.8)}{0.31}} \\ v_{\max }=\sqrt[]{\frac{0.51(10.538)}{0.31}} \\ v_{\max }=\sqrt[]{17.34} \\ v_{\max }=4.16\text{ m/s} \end{gathered}](https://tex.z-dn.net/?f=%5Cbegin%7Bgathered%7D%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%287.5_%7B%7D%2B0.31%5Ctimes9.8%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B%5Cfrac%7B0.51%2810.538%29%7D%7B0.31%7D%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D%5Csqrt%5B%5D%7B17.34%7D%20%5C%5C%20v_%7B%5Cmax%20%7D%3D4.16%5Ctext%7B%20m%2Fs%7D%20%5Cend%7Bgathered%7D)
Thus, the maximum speed of the ball at the top of the vertical circular motion is 4.16 meters per second.
Answer:
a) v = 19,149.6 m/s
b) f = 95%
c) t = 346.5min
Explanation:
First put all values in metric units:

The equation of motion you need is:
where
is the final velocity, a is acceleration and t is time in hours.
Since the spaceship starts from 0 velocity:

Next, you need to calculate the distances traveled on each interval, considering that both starting and final intervals travel the same distance because the acceleration and time are equal. For this part you need the next motion equation:

solving for first and last interval:
Since the spaceship starts and finish with 0 velocity:

Then the ship traveled
at constant speed, which means that it traveled:

Which in percentage is 95% of the trip.
to calculate total time you need to calculate the time used during constant speed:

That added to the other interval times:

Answer:
Part a)

Part b)

Part c)
d = 0.072 m
Explanation:
Part a)
As we know that the radius of the charge particle in constant magnetic field is given by

now for single ionized we have


Part b)
Similarly for doubly ionized ion we will have the same equation



Part c)
The distance between the two particles are half of the loop will be given as


