The heat/enthalpy of vaporization of water represents the energy input required to convert one mole of water into vapor at a constant temperature. Intermolecular forces including hydrogen bondings of significant strength hold water molecules in place under its liquid state. Whereas the molecules experience almost no intermolecular interactions under the gaseous state- consider the way noble gases molecules interact. It is thus necessary to supply sufficient energy to overcome all intermolecular interactions present in the substance under its liquid state to convert the substance into a gas. The heat of vaporization is thus related to the strength of the intermolecular interactions.
Water molecules contain hydrogen atoms bonded directly to oxygen atoms. Oxygen atoms are highly electronegative and take major control of electrons in hydrogen-oxygen bonds. Hydrogen atoms in water molecules thus experience a strong partial-positive charge and would attract lone pairs of electron on neighboring water molecules. "Hydrogen bonds" refer to the attraction between hydrogen atoms bonded to electronegative elements and lone pairs of electrons. The hydrogen-oxygen bonds in water molecules are so polarized that hydrogen bonds in water are stronger than both dipole-dipole interactions and London Dispersion Forces in most other molecules. It thus take high amounts of energy to separate water molecules sufficiently apart such that they no longer experience intermolecular interactions and behave collectively like a gas. As a result, water has one of the highest heat of vaporization among covalent molecules of similar sizes.
The answer is: Survival of the form that will leave the most copies of itself in successive generations.
"Survival of the fittest" is a phrase that originated from Darwinian evolutionary theory.
This is example of natural selection and adaptation.
Genetic variation is important to the population's ability to survive in different situations that affect natural selection.
The environment is constantly changing and different alleles are favored.
The chemical reaction would be as follows:
<span>2Na + S → Na2S
We are given the amount of the reactants to be used in the reaction. We use these to calculate the amount of product. We do as follows:
45.3 g Na ( 1 mol / 22.99 g ) = 1.97 mol Na
105 g S ( 1 mol / 32.06 g ) = 3.28 mol S
The limiting reactant would be Na. We calculate as follows:
1.97 mol Na ( 1 mol Na2S / 2 mol Na ) (78.04 g / mol ) = 76.87 g Na2S produced</span>
Answer:
To the best of my knowledge, it is because of the amount of gamma rays is given off.
Explanation:
While both are isotopes, Potassium 40 gives off fewer gamma rays compared to Cobalt 60. Potassium 40 isn't really harmful to humans, but Cobalt 60 (I believe) is used in chemotherapy.
Im pretty sure the answer is <span> 0.01218859659g
not 100% sure tho so please consult someone else b4 answering
i hope this helps!!</span>