1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nekit [7.7K]
3 years ago
8

Which of the following is a correct version of a user story?

Engineering
1 answer:
alexandr402 [8]3 years ago
6 0

Answer:

As a first-time user, I want to print my account balance and monthly statement.

As a first-time user, I want to review my account balance information.

As a first-time user, I want to access my account and monthly statement.

As a first-time user, I want to access my account to check the balance.

You might be interested in
Using the tables for water determine the specified property data at the indicated state. For H2O at T = 140 °C and v = 0.2 m3/kg
Dennis_Churaev [7]

Answer:

h = 1429.74\,\frac{kJ}{kg}

Explanation:

The determination of any further properties requires the knowledge of two independent properties. (Temperature and specific volume in this case). The specific volumes for saturated liquid and vapor at 140 °C are, respectively:

\nu_{f} = 0.001080\,\frac{m^{3}}{kg}

\nu_{g} = 0.50850\,\frac{m^{3}}{kg}

Since \nu_{f} < \nu < \nu_{g}, it is a liquid-vapor mixture. The quality of the mixture is:

x = \frac{\nu-\nu_{f}}{\nu_{g}-\nu_{f}}

x = \frac{0.2\,\frac{m^{3}}{kg} - 0.001080\,\frac{m^{3}}{kg} }{0.50850\,\frac{m^{3}}{kg} - 0.001080\,\frac{m^{3}}{kg} }

x = 0.392

The specific enthalpies for saturated liquid and vapor at 140 °C are, respectively:

h_{f} = 589.16\,\frac{kJ}{kg}

h_{g} = 2733.5\,\frac{kJ}{kg}

The specific enthalpy is:

h = h_{f}+x\cdot (h_{g}-h_{f})

h = 589.16\,\frac{kJ}{kg}+0.392\cdot \left( 2733.5\,\frac{kJ}{kg} - 589.16\,\frac{kJ}{kg} \right)

h = 1429.74\,\frac{kJ}{kg}

6 0
4 years ago
Read 2 more answers
Statement 1: All balls hit the ground at the same time. Statement 2: All balls hit the ground with the same force. Statement 3:
laiz [17]

Answer:

Statement 1: All balls hit the ground at the same time

Explanation:

When there is no resistance of air, the acceleration due to gravity experienced by all the bodies are same. So for falling bodies, neglecting the air resistance, the falling object will be weightless and therefore all the objects will hit the ground at the same time when there is nor air resistance and the objects are considered to be falling in vacuum.

7 0
3 years ago
Giving free brainlist first 1
kaheart [24]

Hi! Hope you're having a great day!

8 0
3 years ago
How to calculate effective resistance​
denis23 [38]

Answer:

For a circuit with resistances R1 and R2 in series or in parallel as in Figure 2, the effective resistance can be calculated by using the following rules. Rab = R1 + R2.

Explanation:

4 0
3 years ago
For a bolted assembly with eight bolts, the stiffness of each bolt is kb = 1.0 MN/mm and the stiffness of the members is km = 2.
rjkz [21]

Answer:

a) 0.978

b) 0.9191

c) 1.056

d) 0.849

Explanation:

Given data :

Stiffness of each bolt = 1.0 MN/mm

Stiffness of the members = 2.6 MN/mm per bolt

Bolts are preloaded to 75% of proof strength

The bolts are M6 × 1 class 5.8 with rolled threads

Pmax =60 kN,  Pmin = 20kN

<u>a) Determine the yielding factor of safety</u>

n_{p} = \frac{S_{p}A_{t}  }{CP_{max}+ F_{i}  }  ------ ( 1 )

Sp = 380 MPa,   At = 20.1 mm^2,   C = 0.277,  Pmax = 7500 N,  Fi = 5728.5 N

Input the given values into the equation above

equation 1 becomes ( np ) = \frac{380*20.1}{0.277*7500*5728.5} = 0.978

note : values above are derived values whose solution are not basically part of the required solution hence they are not included

<u>b) Determine the overload factor of safety</u>

n_{L} =  \frac{S_{p}A_{t}-F_{i}   }{C(P_{max} )}  ------- ( 2 )

Sp =  380 MPa,   At =  20.1 mm^2, C = 0.277,  Pmax = 7500 N,  Fi = 5728.5 N

input values into equation 2 above

hence : n_{L} = 0.9191n_{L}  = 0.9191

<u>C)  Determine the factor of safety based on joint separation</u>

n_{0} = \frac{F_{i} }{P_{max}(1 - C ) }

Fi =  5728.5 N,  Pmax = 7500 N,  C = 0.277,

input values into equation above

Hence n_{0} = 1.056

<u>D)  Determine the fatigue factor of safety using the Goodman criterion.</u>

nf = 0.849

attached below is the detailed solution .

4 0
3 years ago
Other questions:
  • Steam enters a well-insulated turbine operating at steady state at 4 MPa with a specific enthalpy of 3015.4 kJ/kg and a velocity
    5·1 answer
  • Draw a 3-D physical structure of an NMOS transistor. Label four terminals: body, drain, gate, and source. And also label silicon
    14·1 answer
  • Calculate the molar heat capacity of a monatomic non-metallic solid at 500K which is characterized by an Einstein temperature of
    8·1 answer
  • Cooling fans can be controlled by
    13·1 answer
  • How to solve circuit theory using mesh analysis<br>​
    11·1 answer
  • Faster air movement over an airfoil creates a _________ pressure field, which in turn allows lift.
    7·1 answer
  • Is the pure fission bomb a nuclear bomb?
    5·1 answer
  • Construction lines are thick lines true false
    11·2 answers
  • Computer system analyst advantage​
    5·2 answers
  • Equipment that is not properly stored can create trip and fall hazards in the work area.
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!