Answer:
2543 k
Explanation:
This problem can be resolved by applying the first law of thermodynamics
<u>Determine the adiabatic flame temperature</u> when the furnace is operating at a mass air-fuel ratio of 16 for air preheated to 600 K
attached below is a detailed solution
cp = 1200
To develop the problem it is necessary to apply the concepts related to the ideal gas law, mass flow rate and total enthalpy.
The gas ideal law is given as,

Where,
P = Pressure
V = Volume
m = mass
R = Gas Constant
T = Temperature
Our data are given by




Note that the pressure to 38°C is 0.06626 bar
PART A) Using the ideal gas equation to calculate the mass flow,




Therfore the mass flow rate at which water condenses, then

Re-arrange to find 



PART B) Enthalpy is given by definition as,

Where,
= Enthalpy of dry air
= Enthalpy of water vapor
Replacing with our values we have that



In the conversion system 1 ton is equal to 210kJ / min


The cooling requeriment in tons of cooling is 437.2.
Answer:
1028.1184 Ohms
Explanation:
<u>Given the following data;</u>
- Initial resistance, Ro = 976 Ohms
- Initial temperature, T1 = 0°C
- Final temperature, T2 = 89°C
Assuming the temperature coefficient of resistance for carbon at 0°C is equal to 0.0006 per degree Celsius.
To find determine its new resistance, we would use the mathematical expression for linear resistivity;

Substituting into the equation, we have;




Answer:
Architectural plans.
Explanation:
An architectural plan is called the drawings made by architects, civil engineers or designers of spaces or interiors, in which these professionals capture their building projects, organizing the distribution of the spaces to be used, the elements to be located in them and, fundamentally, to give construction planning a projection into reality. Thus, the plans help professionals to have a better understanding of the expected end result of the projects they are carrying out.
Answer:
The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.
Explanation:
From Fluid Mechanics, we remember that absolute pressure (
), measured in pounds per square inch, is the sum of the atmospheric pressure and the working pressure (gauge pressure). That is:
(1)
Where:
- Atmospheric pressure, measured in pounds per square inch.
- Working pressured of the boiler (gauge pressure), measured in pounds per square inch.
If we suppose that
and
, then the absolute pressure is:


The corresponding absolute pressure of the boiler is 24.696 pounds per square inch.