They are different by a phase shift of pi/2
1.40E+5 (140000)
I believe this is right
194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Explanation:
In order to convert the given number of molecules of BCl₃ to grams, first we have to convert the molecules to moles.
It is known that 1 moles of any element has 6.022×10²³ molecules.
Then 1 molecule will have
moles.
So 
Thus, 1.66 moles are included in BCl₃.
Then in order to convert it from moles to grams, we have to multiply it with the molecular mass of the compound.
As it is known as 1 mole contains molecular mass of the compound.
As the molecular mass of BCl₃ will be

Mass of boron is 10.811 g and the mass of chlorine is 35.453 g.
Molar mass of BCl₃ = 10.811+(3×35.453)=117.17 g.


So, 194.5 g of BCl₃ is present in 1 × 10²⁴ molecules of BCl₃.
Answer:
Option C
CH₃CH₂CH₂COOH
Explanation:
Carbonxylic acids are compounds which has the general formula
R–COOH where R is an alkyl group.
Considering the options given in the question above,
For A:
CH₃CH₂OCH₂CH₃ is an ether compound with general formula ROR' where R and R' are both alkyl group.
For B:
CH₃CH₂CH₂CH₂OH is an alcohol with general formula ROH where R is an alkyl group.
For C:
CH₃CH₂CH₂COOH is a carbonxylic acid with general formula R–COOH where R is an alkyl group.
For D:
CH₃CH₂C=OCH₂CH₃ is a ketone compound with general formula RC=OR' where R and R' are both alkyl group
For E:
ClCH₂CH₂CH₂CH₂CH₂CH₂Br is simply an Alkyl halide with general formula XRX where X is an halogen (i.e F, Cl, Br or I) and R is an alkyl group.
From the above illustration, only option C contains a Carbonxylic compound.
Female energy the answer is the first one