1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
makkiz [27]
2 years ago
5

How exactly do you do the rabbit in the hole loop on your shoe.

Engineering
1 answer:
RideAnS [48]2 years ago
4 0

Step 1- put shoe on
Step 2- grab the laces and cross them
Step 3- once you crossed them pick them back up and put one underneath one.
Step 4- tighten it then make two bunnies
Step 5- put on bunny over the other then loop it around
Step 6 pull the loops and bam you now know how to tie your shoes
You might be interested in
A rigid tank having 25 m3 volume initially contains air having a density of 1.25 kg/m3, then more air is supplied to the tank fr
Hoochie [10]

Answer:

\Delta m = 102.25\,kg

Explanation:

The mass inside the rigid tank before the high pressure stream enters is:

m_{o} = \rho_{air}\cdot V_{tank}

m_{o} = (1.25\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{o} = 31.25\,kg

The final mass inside the rigid tank is:

m_{f} = \rho \cdot V_{tank}

m_{f} = (5.34\,\frac{kg}{m^{3}} )\cdot (25\,m^{3})

m_{f}= 133.5\,kg

The supplied air mass is:

\Delta m = m_{f}-m_{o}

\Delta m = 133.5\,kg-31.25\,kg

\Delta m = 102.25\,kg

4 0
3 years ago
Technician A says that 5W-30 would be better to use than 20W-50 in most vehicles in
shtirl [24]
Technician is correct sorry if im wronghg
5 0
3 years ago
Read 2 more answers
A four-cylinder, four-stroke internal combustion engine has a bore of 3.7 in. and a stroke of 3.4 in. The clearance volume is 16
Bad White [126]

Answer:

the net work per cycle \mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, W = 88.0144746 hp

Explanation:

the information given includes;

diameter of the four-cylinder bore = 3.7 in

length of the stroke = 3.4 in

The clearance volume = 16% = 0.16

The cylindrical volume V_2 = 0.16 V_1

the crankshaft N rotates at a speed of  2400 RPM.

At the beginning of the compression , temperature T_1 = 60 F = 519.67 R    

and;

Otto cycle with a pressure =  14.5 lbf/in² = (14.5 × 144 ) lb/ft²

= 2088 lb/ft²

The maximum temperature in the cycle is 5200 R

From the given information; the change in volume is:

V_1-V_2 = \dfrac{\pi}{4}D^2L

V_1-0.16V_1= \dfrac{\pi}{4}(3.7)^2(3.4)

V_1-0.16V_1= 36.55714291

0.84 V_1 =36.55714291

V_1 =\dfrac{36.55714291}{0.84 }

V_1 =43.52040823 \ in^3 \\ \\  V_1 = 43.52 \ in^3

V_1 = 0.02518 \ ft^3

the mass in air ( lb) can be determined by using the formula:

m = \dfrac{P_1V_1}{RT}

where;

R = 53.3533 ft.lbf/lb.R°

m = \dfrac{2088 \ lb/ft^2 \times 0.02518 \ ft^3}{53.3533 \ ft .lbf/lb.^0R  \times 519 .67 ^0 R}

m = 0.0018962 lb

From the tables  of ideal gas properties at Temperature 519.67 R

v_{r1} =158.58

u_1 = 88.62 Btu/lb

At state of volume 2; the relative volume can be determined as:

v_{r2} = v_{r1}  \times \dfrac{V_2}{V_1}

v_{r2} = 158.58 \times 0.16

v_{r2} = 25.3728

The specific energy u_2 at v_{r2} = 25.3728 is 184.7 Btu/lb

From the tables of ideal gas properties at maximum Temperature T = 5200 R

v_{r3} = 0.1828

u_3 = 1098 \ Btu/lb

To determine the relative volume at state 4; we have:

v_{r4} = v_{r3} \times \dfrac{V_1}{V_2}

v_{r4} =0.1828 \times \dfrac{1}{0.16}

v_{r4} =1.1425

The specific energy u_4 at v_{r4} =1.1425 is 591.84 Btu/lb

Now; the net work per cycle can now be calculated as by using the following formula:

W_{net} = Heat  \ supplied - Heat  \ rejected

W_{net} = m(u_3-u_2)-m(u_4 - u_1)

W_{net} = m(u_3-u_2- u_4 + u_1)

W_{net} = m(1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (1098-184.7- 591.84 + 88.62)

W_{net} = 0.0018962 \times (410.08)

\mathbf{W_{net} = 0.777593696}  Btu per cycle

the power developed by the engine, in horsepower. can be calculated as follows;

In the  four-cylinder, four-stroke internal combustion engine; the power developed by the engine can be calculated by using the expression:

W = 4 \times N'  \times W_{net

where ;

N' = \dfrac{2400}{2}

N' = 1200 cycles/min

N' = 1200 cycles/60 seconds

N' = 20 cycles/sec

W = 4 × 20 cycles/sec ×  0.777593696

W = 62.20749568 Btu/s

W = 88.0144746 hp

8 0
3 years ago
A reversible compression of 1 mol of an ideal gas in a piston/cylinder device results in a pressure increase from 1 bar to P2 an
Mashutka [201]

Answer:

attached below

Explanation:

6 0
3 years ago
Science, Technology, Engineering & Mathematics
miv72 [106K]

A communication systems

4 0
3 years ago
Other questions:
  • In engineering, economic cost is a decision-making tangible factor. Group of answer choices True False
    12·2 answers
  • (10 points) A single crystal in the titanium cable is oriented so that the [001] direction is parallel to the applied load. If t
    14·1 answer
  • The two shafts of a Hooke’s coupling have their axes inclined at 20°.The shaft A revolves at a uniform speed of 1000 rpm. The sh
    5·1 answer
  • A piston–cylinder device containing carbon dioxide gas undergoes an isobaric process from 15 psia and 80°F to 170°F. Determine t
    15·1 answer
  • Would be much appreciated if someone could help with this will give brainiest.
    6·1 answer
  • What was the most important thing you learned this school year in your engineering class and why did you choose this thing
    15·1 answer
  • If Ori gives a friend three reasons for preferring soccer to basketball, that is an algorithm.
    14·2 answers
  • The section should span between 10.9 and 13.4 cm (4.30 and 5.30 inches) as measured from the end supports and should be able to
    5·1 answer
  • A composite shaft with length L = 46 in is made by fitting an aluminum sleeve (Ga = 5 x 10^3 ksi) over a
    14·1 answer
  • Select four items that an industrial engineer must obtain in order to practice in the field.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!