<span>Several
important pollutants are produced by fossil fuel combustion: carbon
monoxide, nitrogen oxides, sulfur oxides, and hydrocarbons. In addition,
total suspended particulates contribute to air pollution, and nitrogen
oxides and hydrocarbons can combine in the atmosphere to form
tropospheric ozone, the major constituent of smog.
Carbon monoxide is a gas formed as a by-product during the incomplete
combustion of all fossil fuels. Exposure to carbon monoxide can cause
headaches and place additional stress on people with heart disease. Cars
and trucks are the primary source of carbon monoxide emissions.
Two oxides of nitrogen--nitrogen dioxide and nitric oxide--are formed in
combustion. Nitrogen oxides appear as yellowish-brown clouds over many
city skylines. They can irritate the lungs, cause bronchitis and
pneumonia, and decrease resistance to respiratory infections. They also
lead to the formation of smog. The transportation sector is responsible
for close to half of the US emissions of nitrogen oxides; power plants
produce most of the rest.
Sulfur oxides are produced by the oxidization of the available sulfur in
a fuel. Utilities that use coal to generate electricity produce
two-thirds of the nation's sulfur dioxide emissions. Nitrogen oxides and
sulfur oxides are important constituents of acid rain. These gases
combine with water vapor in clouds to form sulfuric and nitric acids,
which become part of rain and snow. As the acids accumulate, lakes and
rivers become too acidic for plant and animal life. Acid rain also
affects crops and buildings.
Hydrocarbons are a broad class of pollutants made up of hundreds of
specific compounds containing carbon and hydrogen. The simplest
hydrocarbon, methane, does not readily react with nitrogen oxides to
form smog, but most other hydrocarbons do. Hydrocarbons are emitted from
human-made sources such as auto and truck exhaust, evaporation of
gasoline and solvents, and petroleum refining.
The white haze that can be seen over many cities is tropospheric ozone,
or smog. This gas is not emitted directly into the air; rather, it is
formed when ozone precursors mainly nonmethane hydrocarbons and nitrogen
oxides react in the presence of heat and sunlight. Human exposure to
ozone can produce shortness of breath and, over time, permanent lung
damage. Research shows that ozone may be harmful at levels even lower
than the current federal air standard. In addition, it can reduce crop
yields.
Finally, fossil fuel use also produces particulates, including dust,
soot, smoke, and other suspended matter, which are respiratory
irritants. In addition, particulates may contribute to acid rain
formation.
Also, water and land pollution.
</span>
Answer:
The correct answer is "transferred; unequally shared; equally shared".
Explanation:
Ionic bonding occurs when a positively charged atom (cation) interacts with a negatively charged atom (anion). In ionic bonding, the cation transfers its electron to the anion. In polar covalent bonding, electrons are unequally shared. This means that the electrons spend more time in an atom than the other, which gives partial positive and negative charges to the atoms. On the other hand in nonpolar covalent bonding, the electrons are equally shared and no charges are created.
Answer:
<em></em>
<em></em>
Explanation:
Roughly 96 percent of the mass of the human body is made up of just four elements: oxygen, carbon, hydrogen and nitrogen, with a lot of that in the form of water. The remaining 4 percent is a sparse sampling of the periodic table of elements
Hope this helps :)
Answer: The amount of time needed to plate 14.0 kg of copper onto the cathode is 295 hours
Explanation:
We are given:
Moles of electron = 1 mole
According to mole concept:
1 mole of an atom contains
number of particles.
We know that:
Charge on 1 electron = 
Charge on 1 mole of electrons = 

is passed to deposit = 1 mole of copper
63.5 g of copper is deposited by = 193000 C
of copper is deposited by =
To calculate the time required, we use the equation:

where,
I = current passed = 40.0 A
q = total charge = 42551181 C
t = time required = ?
Putting values in above equation, we get:

Converting this into hours, we use the conversion factor:
1 hr = 3600 seconds
So, 
Hence, the amount of time needed to plate 14.0 kg of copper onto the cathode is 295 hours
1 to 1. Most small atoms have the same number of protons and neutrons