Nonmetals often share or gain
electrons. The nonmetals in the periodic table increases as you move to the
right and decreases as you go down. This is because, the smaller the atom, the
reactive it gets due to less electron attached to the orbits of the atom. The
reactivity of nonmetals is arranged in decreasing order.
<span>
Carbon
</span>
Nitrogen
Oxygen
Fluorine
Phosphorus
<span>
Sulfur</span>
Chlorine
<span>
Selenium</span>
<span>
Bromine</span>
<span>
Iodine</span>
The answer is (B. The study of Matter and Energy) but technically you could consider physics all of these as engineering is based on physics and that would be the study of inventions, chemistry and biology were both discovered because of physics, and physics invokes more math than any other subject as it applies math to the entire Universe.
The magnitude of the source charge is 3 μC which generates 4286 N/C of the electric field. Option B is correct.
What does Gauss Law state?
It states that the electric flux across any closed surface is directly proportional to the net electric charge enclosed by the surface.

Where,
= electric force = 4286 N/C
= Coulomb constant = 
= charges = ?
= distance of separation = 2.5 m
Put the values in the formula,

Therefore, the magnitude of the source charge is 3 μC.
Learn more about Gauss's law:
brainly.com/question/1249602
Answer: B = 1380T
Explanation: please find the attached file for the solution
Answer:
People firstly believe that the planets move in a circular orbit until Newton came up with his hypothesis by inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
Explanation:
- Everyone assumed the planets were perfect circles until Newton came up with an idea. Slowly people would make maps of the orbits that added circles on circles, and they could never really explain about the movement of the planet. They simply say that planets move on circles but they lacked the math to explain or prove it. Then Newton came up with an idea of inventing calculus so that we could understood and calculated planetary orbits and their accuracy.
-
- Firstly people used their observations and say that the orbits looked like circles, then they developed their models and did the math, and proposed their hypothesizes which were wrong, until Newton came along and tried to match a model that used elliptical orbits and invented the math that allowed him to make predictions with it. His model worked for most planets.
-
- However he could not explain about the planet Mercury for instance since it was a very strange orbit. Then after the Einstein's theory of General Relativity he could also explain very deeply about it.
-
- Scientists and Astronomers made hypothesizes that there was another planet orbiting too close to the sun to see with telescopes, called Vulcan, that explained mercury's orbit before Einstein's theory. Then long after we had telescopes which was good enough to see if there was a planet orbiting closer to the sun than mercury.