Answer:
122.735 behind converging lens ; 2.16
Explanation:
Given tgat:
Object distance, u = 29 cm
Image distance, v =
Focal length, f = - 19 (diverging lens)
Mirror formula :
1/u + 1/v = 1/f
1/29 + 1/v = - 1/19
1/v = - 1/19 - 1/29
1/v = −0.087114
v = −11.47916
v = -11.48
Second lens
Object distance :
u = 11.48 + 11 = 22.48 cm
1/v = 1/19 - 1/22.48
1/v = 0.0081475
v = 1 / 0.0081475
v = 122.735 cm
122.735 behind second lens
Magnification, m
m = m1 * m2
m = - v / u
Lens1 :
m1 = -11.48 / 29 = - 0.3958620
m2 = - 122.735 / 22.48 = - 5.4597419
Hence,
- 0.3958620 * - 5.4597419 = 2.16
1) % = (Wo /Wi) * 100
Solve for Wo => Wo = (% / 100) * Wi
For example, % =30% and Wi = 250 => Wo = (30 /100) * 250 = 0.30 * 250 = 75
Wo = 75
2) % = (Wo / Wi) * 100
Solve for Wi
=> Wi = Wo * (%/100)
For example, Wo = 125 and % = 40%
=> Wi = 125 * (40 / 100) = 125 * 0.40 = 50
Wi = 50
Explanation:


<h3>BEFORE COLLISION)
<em> </em><em><u>INITI</u></em><em><u>AL</u></em><em><u> </u></em><em><u>MOM</u></em><em><u>. </u></em><em><u>OF</u></em><em><u> </u></em><em><u>BODY</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u> </u></em></h3>
<em><u>PiA</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m1u1</u></em>
<em><u>After</u></em><em><u> </u></em><em><u>collis</u></em><em><u>ion</u></em><em><u>)</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>. </u></em><em><u>B</u></em><em><u> </u></em><em><u> </u></em><em><u>I. </u></em><em><u>e</u></em><em><u> </u></em><em><u>piB</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m2u2</u></em>
<h2>
<em><u>FINÅL</u></em><em><u> </u></em><em><u>MOMEN</u></em><em><u>TUM</u></em><em><u> </u></em><em><u>OF</u></em><em><u> </u></em><em><u>BØDY</u></em><em><u> </u></em><em><u>A</u></em><em><u> </u></em><em><u>I. </u></em><em><u>e</u></em><em><u> </u></em><em><u>PfA</u></em><em><u>=</u></em><em><u> </u></em><em><u>m1v1</u></em></h2>
<em><u>FINAL</u></em><em><u> </u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>.</u></em><em><u>. </u></em><em><u>B</u></em><em><u> </u></em><em><u>I. </u></em><em><u>e</u></em><em><u> </u></em><em><u>PfB</u></em><em><u> </u></em><em><u>=</u></em><em><u> </u></em><em><u>m2v2</u></em>
<em><u>ùr</u></em><em><u> ãñswer</u></em><em><u> </u></em><em><u>✌️</u></em>
♠️♠️♠️♠️♠️♠️
Answer:
1: 6.18 cm
2: 52.5609 degrees
Explanation:
We have the pendulum speed at the origin, and in that moment, all energy is kinetic, so we can calculate the pendulum energy by:
Ec = 0.5*m*v^2 = 0.5*0.015*1.1^2 = 0.0091 J
Now with that energy, we can calculate the height the pendulum will reach, as in that moment, the kinetic energy is totally converted to gravitational potencial energy:
Eg = m*g*h = 0.0091
0.015 * 9.81 * h = 0.0091
h = 0.0091 / (0.015 * 9.81 ) = 0.0618 m = 6.18 cm
Looking at the image attached, we can see that the pendulum will form a triangle, and one of the cathetus will be the length of the pendulum minus the height it went up, and the hypotenusa will be the pendulum length.
So, we know that the sine of the angle will be the division between the opposite cathetus and the hypotenusa:
sin(angle) = (30-6.18)/30 = 23.82/30 = 0.794 -> angle = 52.5609 degrees
Efficiency of a simple machine is the ratio of mechanical advantage and speed ratio.
If mechanical advantage = speed ratio then efficiency = 1
Which is impossible for a practical machine due to presence of frictional force which wastes some energy and thus lowers the output