Answer:
Second drop: 1.04 m
First drop: 1.66 m
Explanation:
Assuming the droplets are not affected by aerodynamic drag.
They are in free fall, affected only by gravity.
I set a frame of reference with the origin at the nozzle and the positive X axis pointing down.
We can use the equation for position under constant acceleration.
X(t) = x0 + v0 * t + 1/2 * a *t^2
x0 = 0
a = 9.81 m/s^2
v0 = 0
Then:
X(t) = 4.9 * t^2
The drop will hit the floor when X(t) = 1.9
1.9 = 4.9 * t^2
t^2 = 1.9 / 4.9

That is the moment when the 4th drop begins falling.
Assuming they fall at constant interval,
Δt = 0.62 / 3 = 0.2 s (approximately)
The second drop will be at:
X2(0.62) = 4.9 * (0.62 - 1*0.2)^2 = 0.86 m
And the third at:
X3(0.62) = 4.9 * (0.62 - 2*0.2)^2 = 0.24 m
The positions are:
1.9 - 0.86 = 1.04 m
1.9 - 0.24 = 1.66 m
above the floor
used cross breeding to purposely breed plan
studied a variety of pea plant traits
studied several generations of plants
In order to breed or cross one plant with another, Mendel opened the petals and removed the anthers from the flower and dusted the pistil with pollen from the plant he wished to cross it with and covered the flower with a small bag to prevent the pollen in the air from landing in the pistil. This process is called cross pollination.
Mendel considered 7 characters of pea plant for his study and did the study for several generations.
Spectroscopy — the use of light from a distant object to work out the object is made of — could be the single-most powerful tool astronomers use, says Professor Fred Watson from the Australian Astronomical Observatory. ... "It lets you see the chemicals being absorbed or emitted by the light source.
Answer:
Current, I = 0.000109 Amps
Explanation:
Given the following data;
Voltage = 6V
Resistance = 55,000 Ohms
To find the current flowing through the circuit;
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Making current the subject of formula, we have;
Substituting into the formula, we have;
Current, I = 0.000109 Amps