The correct answer to this question is false
Answer:
9.3 g/cm³
Explanation:
First, convert kg to g:
0.485 kg × (1000 g / kg) = 485 g
Density is mass divided by volume:
D = (485 g) / (52 cm³)
D = 9.33 g/cm³
Rounding to two significant figures, the density is 9.3 g/cm³.
Explanation:
I believe <u>f</u><u>i</u><u>l</u><u>m</u><u> </u><u>i</u><u>s</u><u> </u>not part of a circuit
Answer:
The motion of a simple pendulum is very close to Simple Harmonic Motion (SHM). SHM results whenever a restoring force is proportional to the displacement, a relationship often known as Hooke's Law when applied to springs. Where F is the restoring force, k is the spring constant, and x is the displacement.
where θ is the angle the pendulum makes with the vertical. For small angles, sin(θ)∼θ, which would then lead to simple harmonic motion. For large angles, this approximation no longer holds, and the motion is not considered to be simple harmonic motion.
Answer:
d₂ = 1.466 m
Explanation:
In this case we must use the rotational equilibrium equations
Στ = 0
τ = F r
we must set a reference system, we use with origin at the easel B and an axis parallel to the plank
, we will use that the counterclockwise ratio is positive
+ W d₁ - w_cat d₂ = 0
d₂ = W / w d₁
d₂ = M /m d₁
d₂ = 5.00 /2.9 0.850
d₂ = 1.466 m