Answer:


Explanation:
first write the equilibrium equaion ,
⇄ 
assuming degree of dissociation
=1/10;
and initial concentraion of
=c;
At equlibrium ;
concentration of
![[C_3H_5O_3^{-} ]= c\alpha](https://tex.z-dn.net/?f=%5BC_3H_5O_3%5E%7B-%7D%20%20%5D%3D%20c%5Calpha)
![[H^{+}] = c\alpha](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3D%20c%5Calpha)

is very small so
can be neglected
and equation is;

= 
![P_H =- log[H^{+} ]](https://tex.z-dn.net/?f=P_H%20%3D-%20log%5BH%5E%7B%2B%7D%20%5D)





composiion ;
![c=\frac{1}{\alpha} \times [H^{+}]](https://tex.z-dn.net/?f=c%3D%5Cfrac%7B1%7D%7B%5Calpha%7D%20%5Ctimes%20%5BH%5E%7B%2B%7D%5D)
![[H^{+}] =antilog(-P_H)](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%5D%20%3Dantilog%28-P_H%29)
![[H^{+} ] =0.0014](https://tex.z-dn.net/?f=%5BH%5E%7B%2B%7D%20%5D%20%3D0.0014)


Can you show a picture so I can help??? :)
Answer:
The final mass of sample is 1.3 g.
Explanation:
Given data:
Half life of H-3 = 12.32 years
Amount left for 15.0 years = 3.02 g
Final amount = ?
Solution:
First all we will calculate the decay constant.
t₁/₂ = ln² /k
t₁/₂ =12.32 years
12.32 y = ln² /k
k = ln²/12.32 y
k = 0.05626 y⁻¹
Now we will find the original amount:
ln (A°/A) = Kt
ln (3.02 g/ A) = 0.05626 y⁻¹ × 15.0 y
ln (3.02 g/ A) = 0.8439
3.02 g/ A = e⁰°⁸⁴³⁹
3.02 g/ A = 2.33
A = 3.02 g/ 2.33
A = 1.3 g
The final mass of sample is 1.3 g.
They drill too deep and find lava