Answer:
0.296 J/g°C
Explanation:
Step 1:
Data obtained from the question.
Mass (M) =35g
Heat Absorbed (Q) = 1606 J
Initial temperature (T1) = 10°C
Final temperature (T2) = 165°C
Change in temperature (ΔT) = T2 – T1 = 165°C – 10°C = 155°C
Specific heat capacity (C) =..?
Step 2:
Determination of the specific heat capacity of iron.
Q = MCΔT
C = Q/MΔT
C = 1606 / (35 x 155)
C = 0.296 J/g°C
Therefore, the specific heat capacity of iron is 0.296 J/g°C
Answer:
please the answer Is false
I believe it is B. A series circuit has one path for electrons, but a parallel circuit has more then one path.
Could I Have brainliest?
Answer:
212 degrees F, and 100 degrees C.
Explanation:
If the temperature is held constant (which requires some heat input, since evaporation cools things) the liquid will all evaporate. If the temperature is much above 212 F, the water will boil. That means that it wont just evaporate from the surface but will form vapor bubbles, which then grow, inside the liquid itself. :)
Answer:
Option A) Na
Explanation:
From the options given above, sodium (Na) is most likely to lose electron to form ion
Na is a group 1 metal. Metals form ions by losing electron(s).
From the options given above, only Na is a metal and so it is most likely to form ion by losing electron