Answer:
Final Velocity (Vf)= 139.864 ft/s
Time (t)= 4,34 s
Explanation:
This is a free fall problem, to solve it we will apply free fall concepts:
In a free fall the acceletarion is gravity (g) = 9,81 m/s2, if we convert it to ft/s^2 = g= 32.174 ft/s^2
- Final velocity is Vf= Vo+ g*t[tex]Vf^{2} = Vo^{2} +2*g*h
where h is height (304 ft in this case).
Vo =0 since the hammer wasn't moving when it stared to fall
Then Vf^2= 0 + 2* 32.174 ft/s^2 *304 ft
Vf^2= 19,561.8224 ft^2/s^2
Vf=[sqrt{19561.8224 ft^2/s^2}
Vf=139.864 ft/s
Time t= (Vf-Vo)/g => (139.864 ft/s-0)/32.174 ft/s^2 = 4.34 sec
Good luck!
Answer:
Developed by the project management institute (PMI) ,the five phases of project management include conception and imitation ,planning ,execuation, performance ,monitoring, and project close .
Answer:
Signal the driver behind you when it is safe to pass by turning on your four-way emergency flashers.
Avoiding casualties is the top priority when driving, the other choices given do not put whether there are cars in the other lane into consideration, therefore making them incorrect. Signaling the driver when it is safe gives you the time and them the gateway to pass, making a nice interaction keep you both alive.
Answer what do you want i know a project but what is it on?
Explanation: