1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kobotan [32]
2 years ago
11

HELP!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

Engineering
1 answer:
trasher [3.6K]2 years ago
4 0

Answer:

The publication of a parody for commercial gain does not fall within the protection afforded by Section 107, as it is used for commercial gain.

Explanation:

<h2><u><em>PLEASE MARK AS BRAINLIEST!!!!!</em></u></h2>
You might be interested in
A metallic material with yield stress of 140 MPa and cross section of 300 mm x 100 mm, is subjected to a tensile force of 8.00 M
Readme [11.4K]

Answer:Yes,266.66 MPa

Explanation:

Given

Yield stress of material =140 MPa

Cross-section of 300\times 100 mm^2

Force(F)=8 MN

Therefore stress due to this Force(\sigma)

\sigma =\frac{F}{A}=\frac{8\times 10^6}{300\times 100\times 10^{-6}}

\sigma =266.66 \times 10^{6} Pa

\sigma =266.66 MPa

Since induced stress  is greater than Yield stress therefore Plastic deformation occurs

8 0
3 years ago
A sample of wastewater is diluted 10 times. The diluted solution has an ultimate biochemical oxygen demand (BOD), Lo, of 30 mg/L
zzz [600]

Answer:

474.59 mg/L

Explanation:

Given that

BOD = 30 mg/L

Original BOD  = 30 mg/L × dilution factor

Original BOD  = 30 mg/L  × 10 = 300 mg/L

L_o = \frac{BOD}{1-e^{-5t}}

here L_o is the ultimate BOD ; BOD is the  biochemical oxygen demand ;  t = 0.20 /day

L_o = \frac{300}{1-e^{-5(0.20)}}

L_o = 474.59 \ mg/L

3 0
3 years ago
What is a shearing stress? Is there a force resulting from two solids in contact to which is it similar?
Luba_88 [7]

Answer:

Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.

Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.

Mathematically in a plane AB the shearing stresses are given by

\tau =\frac{Fcos(\theta )}{A}

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.  

7 0
3 years ago
Which option distinguishes the type of software the team should use in the following scenario?
Vladimir79 [104]
C geographic mapping software
7 0
3 years ago
11–17 A long, thin-walled double-pipe heat exchanger with tube and shell diameters of 1.0 cm and 2.5 cm, respectively, is used t
lana [24]

Answer:

the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C

Explanation:

Given:

d₁ = diameter of the tube = 1 cm = 0.01 m

d₂ = diameter of the shell = 2.5 cm = 0.025 m

Refrigerant-134a

20°C is the temperature of water

h₁ = convection heat transfer coefficient = 4100 W/m² K

Water flows at a rate of 0.3 kg/s

Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?

First at all, you need to get the properties of water at 20°C in tables:

k = 0.598 W/m°C

v = 1.004x10⁻⁶m²/s

Pr = 7.01

ρ = 998 kg/m³

Now, you need to calculate the velocity of the water that flows through the shell:

v_{w} =\frac{m}{\rho \pi (\frac{d_{2}^{2}-d_{1}^{2}  }{4} )} =\frac{0.3}{998*\pi (\frac{0.025^{2}-0.01^{2}  }{4}) } =0.729m/s

It is necessary to get the Reynold's number:

Re=\frac{v_{w}(d_{2}-d_{1}) }{v} =\frac{0.729*(0.025-0.01)}{1.004x10^{-6} } =10891.4343

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

Nu=0.023Re^{0.8} Pr^{0.4} =0.023*(10891.4343)^{0.8} *(7.01)^{0.4} =85.0517

The overall heat transfer coefficient:

Q=\frac{1}{\frac{1}{h_{1} }+\frac{1}{h_{2} }  }

Here

h_{2} =\frac{kNu}{d_{2}-d_{1}} =\frac{0.598*85.0517}{0.025-0.01} =3390.7278W/m^{2}C

Substituting values:

Q=\frac{1}{\frac{1}{4100}+\frac{1}{3390.7278}  } =1855.8923W/m^{2} C

5 0
3 years ago
Other questions:
  • Identify each statement as referring to a series or parallel circuit.
    15·1 answer
  • In order to build a skyscraper Builders, Inc. hires 400 construction workers and 50 managers. Builders, Inc. represents A entrep
    8·1 answer
  • A. Derive linear density expressions for BCC [110] and [111] directions in terms of the atomic radius R.
    7·1 answer
  • What are example for mantle
    5·1 answer
  • Is an ideal way for a high school student to see what an engineer does on a typical day but does not provide a hands-on experien
    9·2 answers
  • Which is the maximum length for any opening on the surface of a 2G SMAW guided bend test specimen?
    11·1 answer
  • Which one of the following is not an economic want?
    6·1 answer
  • Use pseudocode. 1) Prompt for and input a saleswoman's sales for the month (in dollars) and her commission rate (percentage). Ou
    6·1 answer
  • Why do you think there are so many different kinds of can openers?
    10·1 answer
  • All of the following affect friction EXCEPT
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!