Answer:Yes,266.66 MPa
Explanation:
Given
Yield stress of material =140 MPa
Cross-section of 
Force(F)=8 MN
Therefore stress due to this Force(
)



Since induced stress is greater than Yield stress therefore Plastic deformation occurs
Answer:
474.59 mg/L
Explanation:
Given that
BOD = 30 mg/L
Original BOD = 30 mg/L × dilution factor
Original BOD = 30 mg/L × 10 = 300 mg/L

here
is the ultimate BOD ; BOD is the biochemical oxygen demand ; t = 0.20 /day

Answer:
Shearing stresses are the stresses generated in any material when a force acts in such a way that it tends to tear off the material.
Generally the above definition is valid at an armature level, in more technical terms shearing stresses are the component of the stresses that act parallel to any plane in a material that is under stress. Shearing stresses are present in a body even if normal forces act on it along the centroidal axis.
Mathematically in a plane AB the shearing stresses are given by

Yes the shearing force which generates the shearing stresses is similar to frictional force that acts between the 2 surfaces in contact with each other.
Answer:
the overall heat transfer coefficient of this heat exchanger is 1855.8923 W/m²°C
Explanation:
Given:
d₁ = diameter of the tube = 1 cm = 0.01 m
d₂ = diameter of the shell = 2.5 cm = 0.025 m
Refrigerant-134a
20°C is the temperature of water
h₁ = convection heat transfer coefficient = 4100 W/m² K
Water flows at a rate of 0.3 kg/s
Question: Determine the overall heat transfer coefficient of this heat exchanger, Q = ?
First at all, you need to get the properties of water at 20°C in tables:
k = 0.598 W/m°C
v = 1.004x10⁻⁶m²/s
Pr = 7.01
ρ = 998 kg/m³
Now, you need to calculate the velocity of the water that flows through the shell:

It is necessary to get the Reynold's number:

Like the Reynold's number is greater than 10000, the regime is turbulent. Now, the Nusselt's number:

The overall heat transfer coefficient:

Here

Substituting values:
