Answer:
1.96 kg/s.
Explanation:
So, we are given the following data or parameters or information which we are going to use in solving this question effectively and these data are;
=> Superheated water vapor at a pressure = 20 MPa,
=> temperature = 500°C,
=> " flow rate of 10 kg/s is to be brought to a saturated vapor state at 10 MPa in an open feedwater heater."
=> "mixing this stream with a stream of liquid water at 20°C and 10 MPa."
K1 = 3241.18, k2 = 93.28 and 2725.47.
Therefore, m1 + m2= m3.
10(3241.18) + m2 (93.28) = (10 + m3) 2725.47.
=> 1.96 kg/s.
Answer:
Those products are generally called Work in Process WIP
Explanation:
Work in process (WIP), or work in progress (WIP), goods in process, or in-process inventory in a manufacturing industry/company refer to the company's partially finished goods waiting for completion and eventual sale or the value of these items.
These items are either just being produced or require further processing (like purification, separation, packaging or handling) in a queue or a buffer storage.
What am I going to select?? What are my choices bro????
Answer:
a) 28 stations
b) Rp = 21.43
E = 0.5
Explanation:
Given:
Average downtime per occurrence = 5.0 min
Probability that leads to downtime, d= 0.01
Total work time, Tc = 39.2 min
a) For the optimum number of stations on the line that will maximize production rate.
Maximizing Rp =minimizing Tp
Tp = Tc + Ftd
At minimum pt. = 0, we have:
dTp/dn = 0
Solving for n²:
The optimum number of stations on the line that will maximize production rate is 28 stations.
b)
Tp = 1.4 +1.4 = 2.8
The production rate, Rp =
The proportion uptime,
Answer:
The density of the copper is higher than aluminium. Hence it is heavier compared to aluminium conductors it requires strong structures and hardware to bear the weight. More ductile and has high tensile strength.
...
Aluminium & Copper properties.
Property Copper (Cu) Aluminium (Al)
Density (g/cm3) 8.96 2.70