Las hojas de cálculo en Excel facilitan los cálculos numéricos a través del uso de fórmulas; de manera fácil y rápida se pueden hacer operaciones aritméticas sobre cientos de miles de datos numéricos; por lo que se puede actualizar o corregir cualquiera de los datos numéricos y las operaciones se recalculan
Answer:
i)ω=3600 rad/s
ii)V=7059.44 m/s
iii)F=1245.8 N
Explanation:
i)
We know that angular speed given as
We know that for one revolution
θ=2π
Given that time t= 2 hr
So
ω=θ/t
ω=2π/2 = π rad/hr
ω=3600 rad/s
ii)
Average speed V
Where M is the mass of earth.
R is the distance
G is the constant.
Now by putting the values
V=7059.44 m/s
iii)
We know that centripetal fore given as
Here given that m= 200 kg
R= 8000 km
so now by putting the values
F=1245.8 N
Answer:
3) the pressure drop across high MERV filters is significant.
Explanation:
MERV (Minimum-Efficiency Reporting Value) is used to measure the efficiency of filter to remove particles. A filter of high MERV can filter smaller particles but this causes an increase in reduced air flow that is an increase in pressure drop. High MERV filters capture more particles causing them to get congested faster and thereby increasing pressure drop.
Excessive pressure drop can cause overheating and lead to damage of the filter. The pressure drop can be reduced by increasing the surface area of the filter.
Answer:
15.64 MW
Explanation:
The computation of value of X that gives maximum profit is shown below:-
Profit = Revenue - Cost
= 15x - 0.2x 2 - 12 - 0.3x - 0.27x 2
= 14.7x - .47x^2 - 12
After solving the above equation we will get maximum differentiate for profit that is
14.7 - 0.94x = 0
So,
x = 15.64 MW
Therefore for computing the value of X that gives maximum profit we simply solve the above equation.
Answer:
k = 4.21 * 10⁻³(L/(mol.s))
Explanation:
We know that
k = Ae ------------------- euqation (1)
K= rate constant;
A = frequency factor = 4.36 10^11 M⁻¹s⁻¹;
E = activation energy = 93.1kJ/mol;
R= ideal gas constant = 8.314 J/mol.K;
T= temperature = 332 K;
Put values in equation 1.
k = 4.36*10¹¹(M⁻¹s⁻¹)e
k = 4.2154 * 10⁻³(M⁻¹s⁻¹)
here M =mol/L
k = 4.21 * 10⁻³((mol/L)⁻¹s⁻¹)
or
k = 4.21 * 10⁻³((L/mol)s⁻¹)
or
k = 4.21 * 10⁻³(L/(mol.s))