Answer:
c. an abrupt increase followed by a gradual decrease
Explanation:
At the headwater, the flow gradient starts high but then slowly decreases as the river moves downstream to its mouth.
Answer: D) All of the above
Explanation:
Burn rate can be affected by all of the above reasons as, variation in chamber pressure because the pressure are dependence on the burn rate and temperature variation in initial gain can affect the rate of the chemical reactions and initial gain in the temperature increased the burning rate. As, gas flow velocity also influenced to increasing the burn rate as it flowing parallel to the surface burning. Burn rate is also known as erosive burning because of the variation in flow velocity and chamber pressure.
Answer:
- public class Main {
- public static void main(String[] args) {
- String testString = "abscacd";
-
- String evenStr = "";
- String oddStr = "";
-
- for(int i=testString.length() - 1; i >= 0; i--){
-
- if(i % 2 == 0){
- evenStr += testString.charAt(i);
- }
- else{
- oddStr += testString.charAt(i);
- }
- }
-
- System.out.println(evenStr + oddStr);
- }
- }
Explanation:
Firstly, let declare a variable testString to hold an input string "abscacd" (Line 1).
Next create another two String variable, evenStr and oddStr and initialize them with empty string (Line 5-6). These two variables will be used to hold the string at even index and odd index, respectively.
Next, we create a for loop that traverse the characters of the input string from the back by setting initial position index i to testString.length() - 1 (Line 8). Within the for-loop, create if and else block to check if the current index, i is divisible by 2, (i % 2 == 0), use the current i to get the character of the testString and join it with evenStr. Otherwise, join it with oddStr (Line 10 -14).
At last, we print the concatenated evenStr and oddStr (Line 18).
Answer:
Impulse =14937.9 N
tangential force =14937.9 N
Explanation:
Given that
Mass of car m= 800 kg
initial velocity u=0
Final velocity v=390 km/hr
Final velocity v=108.3 m/s
So change in linear momentum P= m x v
P= 800 x 108.3
P=86640 kg.m/s
We know that impulse force F= P/t
So F= 86640/5.8 N
F=14937.9 N
Impulse force F= 14937.9 N
We know that
v=u + at
108.3 = 0 + a x 5.8
So tangential force F= m x a
F=18.66 x 800
F=14937.9 N
Remote?? maybe I’m not really sure