Answer:
Explanation:
For this problem, we just need to remember conservation of momentum, as there are no external forces in the horizontal direction:

where the suffix i means initial, and the suffix f means final.
The initial momentum will be:

as the second puck is initially at rest:

Using the unit vector
pointing in the original line of motion:



So:


Knowing the magnitude and directions relative to the x axis, we can find Cartesian representation of the vectors using the formula

So, our velocity vectors will be:


We got


So, we got the equations:

and
.
From the last one, we get:




and, for the first one:






so:

and


Think it would be c, 5.1 g
30 km/h * 17 h = 30*17 km/h *h
= 510 km
The molecules are continually colliding with each other and with the walls of the container. When a molecule collides with the wall, they exert<span> small force on the wall The </span>pressure exerted<span> by the </span>gas<span> is due to the sum of all these collision forces.The more particles that hit the walls, the higher the </span>pressure<span>.</span>