A uniform thin solid door has height 2.20 m, width .870 m, and mass 23.0 kg. Find its moment of inertia for rotation on its hinges. Is any piece of data unnecessary? So far, I don't understand how to calculate moments of inertia for things like this at all. I can do a system of particles, but when it comes to any ridgid objects, such as this door or rods or cylinders, I don't get it. So basically I have no idea where to even start with this.
so A
Answer:
mass- the amount of matter in an object
balance- tool used to measure mass
scale- a tool used to measure weight
weight- the downward pull on an object due to gravity
Answer:
a) m_v = m_s ((
)² - 1) , b) m_v = 1.07 10⁻¹⁴ g
Explanation:
a) The angular velocity of a simple harmonic motion is
w² = k / m
where k is the spring constant and m is the mass of the oscillator
let's apply this expression to our case,
silicon only
w₉² =
k = w₀² m_s
silicon with virus
w² =
k = w² (m_v + m_s)
in the two expressions the constant k is the same and q as the one property of the silicon bar, let us equal
w₀² m_s = w² (m_v + m_s)
m_v = (
)² m_s - m_s
m_v = m_s ((
)² - 1)
b) let's calculate
m_v = 2.13 10⁻¹⁶ [(
)² - 1)]
m_v = 1.07 10⁻¹⁴ g