A. Movement of tectonic plates... When these plates move they create an earthquake
We have thatThe options that define Speed, Velocity,Acceleration.
- Speed is used to describe how fast the object is moving.
- Acceleration is the rate of change of velocity in time.
- Velocity is used to describe how fast the object is moving and tells us in which direction it is going.
Options
B,D,E
From the question we are told
Choose the correct definitions of speed, velocity, and acceleration. Check all that apply.
- Acceleration tells us in which direction the object is going. Speed is the rate of change of velocity in time.
- Acceleration is the rate of change of velocity in time.
- Velocity is used to describe changes in the movement direction of the object. Acceleration tells us how far the object will go in a certain amount of time.
- Velocity is used to describe how fast the object is moving and tells us in which direction it is going.
- Speed is used to describe how fast the object is moving.
- Velocity is the rate of change of speed in time.
Speed is used to describe how fast the object is moving and tells us in which direction it is going.
Generally
- Acceleration is the rate of change of velocity in time.
- Velocity is used to describe how fast the object is moving and tells us in which direction it is going.
- Speed is used to describe how fast the object is moving without its direction in consideration
Hence
The options that define Speed, Velocity,Acceleration.
- Speed is used to describe how fast the object is moving.
- Acceleration is the rate of change of velocity in time.
- Velocity is used to describe how fast the object is moving and tells us in which direction it is going.
Options
B,D,E
For more information on this visit
brainly.com/question/23379286
C.
Newton’s Second Law is F=ma (force is equal to the mass multiplied by acceleration), however, the equation can be rearranged to isolate and calculate mass from force over acceleration. Therefore, m=F/a
At the center of a 50 m diameter circular ice rink, if a 77 kg skater traveling at 2.3
m/s and then collides with a 63 kg skates traveling at 3.7 m/s. This is how
long it will take them to glide to the edge of the rink:
Speed after the collision= √{[77(2.3)77^2]
+ [63(3.7)^2]} / (77+63)=2.09 m/s
For them to be able to get to the edge
which is 50 m away it will take them 23.9
seconds.
Using the formula v=f times lambada
then v=the speed of light.
and f=what’s we’re looking for
and lambada=the wavelength.
so then you sub what you have (v and lambada) in the formula.
then multiply the frequency(f) by the given wavelength and then solve for f