Answer:
692.31 N
Explanation:
Applying,
F = ma............... Equation 1
Where F = Average force required to stop the player, m = mass of the player, a = acceleration of the player
But,
a = (v-u)/t............ Equation 2
Where v = final velocity, u = initial velocity, t = time.
Substitute equation 2 into equation 1
F = m(v-u)/t............ Equation 3
From the question,
Given: m = 75 kg, u = 6.0 m/s, v = 0 m/s (to stop), t = 0.65 s
Substitute these values into equation 3
F = 75(0-6)/0.65
F = -692.31 N
Hence the average force required to stop the player is 692.31 N
<u>Given that:</u>
Ball dropped from a bridge at the rate of 3 seconds
Determine the height of fall (S) = ?
As we know that, S = ut + 1/2 ×a.t²
u =initial velocity = 0
a= g =9.81 m/s (since free fall)
S = 0+ 1/2 × 9.81 × 3²
<em> S = 44.145 m</em>
<em>44.145 m far is the bridge from water</em>
An object in motion will stay in motion unless acted upon another force.
Newton used this to prove that gravity existed. Without an unseen force, we could throw a ball and it would go on forever correct? Unless there was something to pull it down, in this case, gravity.
Radio waves are the longest
Answer:
Explanation:
The mass of the man can be found by using the formula
f is the force
a is the acceleration
From the question we have
We have the final answer as
<h3>50 kg</h3>
Hope this helps you