The astronaut final velocity is 0.06 m/s to the right
Explanation:
In absence of external forces, the total momentum of the box-astronaut system is conserved.
At the beginnig, the total momentum of the two is zero, since they are at rest:

While the final momentum, after the astronaut throws the box, is:

where
m = 11 kg is the mass of the box
M = 79 kg is the mass of the astronaut
v = -0.45 m/s (to the left) is the velocity of the box (we take left as negative direction)
V is the final velocity of the astronaut
The total momentum is conserved, so

And solving , we find V:

And the positive sign indicates that the direction is to the right.
Learn more about momentum:
brainly.com/question/7973509
brainly.com/question/6573742
brainly.com/question/2370982
brainly.com/question/9484203
#LearnwithBrainly
Answer:
q = 4.87 X 10^ -14 C
Explanation:
As d=0.350 mm
The ink drop will be accelerated by the electric field between the plates:
a = F/m
d = a(D0 / v)^2 / 2 ...... 1
a = qE/m ............... 2
Substituting 2 into 1:
d = (qE/m)(D0 / v)^2 / 2
q = 2mdv^2 / [E(D0)^2]
q = 2(1.00e-11 kg)(3.50e-4 m)(15.0 m/s)^2 / [(7.70e4 N/C)(2.05e-2 m)^2]
q = 4.87e-14 C
Answer:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. The total momentum of the trolleys after separation is zero
c. The momentum of the 2 kg trolley after separation is 12 kg·m/s
d. The momentum of the 3 kg trolley is -12 kg·m/s
e. The velocity of the 3 kg trolley = -4 m/s
Explanation:
a. The total momentum of the trolleys which are at rest before the separation is zero
b. By the principle of the conservation of linear momentum, the total momentum of the trolleys after separation = The total momentum of the trolleys before separation = 0
c. The momentum of the 2 kg trolley after separation = Mass × Velocity = 2 kg × 6 m/s = 12 kg·m/s
d. Given that the total momentum of the trolleys after separation is zero, the momentum of the 3 kg trolley is equal and opposite to the momentum of the 2 kg trolley = -12 kg·m/s
e. The momentum of the 3 kg trolley = Mass of the 3 kg Trolley × Velocity of the 3 kg trolley
∴ The momentum of the 3 kg trolley = 3 kg × Velocity of the 3 kg trolley = -12 kg·m/s
The velocity of the 3 kg trolley = -12 kg·m/s/(3 kg) = -4 m/s
U can try to use capacitor , the value of capacitor depends on circuit
ripple factors signifies the ac components, by def its ratio of rms value of ac component to value of dc component
so in order to reduce use of a capacitor which denies the sudden changes in voltage, which is the charracteristic of Ac signals
hope this helps