To solve this problem it is necessary to apply the concepts related to the adiabatic process that relate the temperature and pressure variables
Mathematically this can be determined as

Where
Temperature at inlet of turbine
Temperature at exit of turbine
Pressure at exit of turbine
Pressure at exit of turbine
The steady flow Energy equation for an open system is given as follows:


Where,
m = mass
= mass at inlet
= Mass at outlet
= Enthalpy at inlet
= Enthalpy at outlet
W = Work done
Q = Heat transferred
= Velocity at inlet
= Velocity at outlet
= Height at inlet
= Height at outlet
For the insulated system with neglecting kinetic and potential energy effects


Using the relation T-P we can find the final temperature:



From this point we can find the work done using the value of the specific heat of the air that is 1,005kJ / kgK
So:




Therefore the maximum theoretical work that could be developed by the turbine is 678.248kJ/kg
Answer:
volt ÷ ampere
Explanation:
The mathematical form of Ohms law is given by :
V = IR
Where V is voltage
I is current
R is resistance

The unit of voltage is volt and that of current is ampere
Unit of resistance :

So, volt ÷ ampere is the same as the unit of resistance. Hence, the correct option is (a).
Without air resistance, the ball would reach a height of h = 31.9 m(pic 1)
The gravitational potential energy difference would be ΔU = 62.588J - 43.164J = 19,424J (pic2 + 3)
The work done by air resistance must be equal to the energy difference(pic4)
The magnitude of the air resistance: F = 0.883N
Assuming the accleration applied was constant, we have



Then the force applied to the ball is given by

