The answer is going to be 476.06.
Plant cells<span> are </span>eukaryotic cells<span>. Prokaryotic </span>cells<span> do not contain a membrane bound nucleus, mitochondria or other membrane bound </span>cell<span> structures (organelles), the DNA of prokaryotic </span>cells<span> are located in the cytoplasm of the </span>cell<span>. ... </span>Plant cells<span> are </span>eukaryotic<span> because they have a nuclear membrane.
so therefore, A rose thorn is a eukaryotic plant cell.</span>
<span>I’ve answered this
question before so if these are the choices to the question presented:
An oxygen atom double-bonded to a carbon atom, with a hydrogen atom
single-bonded to the same carbon atom. </span><span>
<span>A hydrogen atom covalently bonded to an oxygen atom, which is
covalently bonded to a carbon in the carbon chain. </span>
<span>A carbon atom single-bonded between two other carbon atoms,
with an oxygen atom double-bonded to the central carbon atom as well. </span>
<span>An oxygen atom single-bonded between two carbon atoms within
a carbon chain.
Then, the answer would be “a hydrogen atom covalently bonded to an oxygen atom,
which is covalently bonded to a carbon in the carbon chain.<span>”</span></span></span>
The 2 parts or components that make up a solution would be the solute and the solvent.
According to the balanced equation of the reaction:
2C2H2 + 5O2 → 4CO2 + 2H2O
So we can mention all as liters,
A) as we see that 2 liters of C2H2 react with 5 liters of oxygen to produce 4 liters of CO4 and 2 liters of H2O
So, when we have 75L of CO2
and when we have 2 L of C2H2 reacts and gives 4 L of CO2
2C2H2 → 4CO2
∴ The volume of C2H2 required is:
= 75L / 2
= 37.5 L
B) and, when we have 75 L of CO2
and 4CO2 → 2H2O
∴ the volume of H2O required is:
= 75 L /2
= 37.5 L
C) and from the balanced equation and by the same way:
when 5 liters O2 reacts to give 4 liters of CO2
and we have 75 L of CO2:
5 O2 → 4 CO2
?? ← 75 L
∴ the volume of O2 required is:
= 75 *(5/4)
= 93.75 L
D) about the using of the number of moles the answer is:
no, there is no need to find the number of moles as we called everything in the balanced equation by liters and use it as a liter unit to get the volume, without the need to get the number of moles.