Answer:
All electrons are negative(-) charged
When using the right-hand rule to determine the direction of the magnetic force on a charge, which part of the hand points in the direction that the charge is moving? The answer is <span>thumb.
</span>One way to remember this is that there is one velocity, represented accordingly by the thumb. There are many field lines, represented accordingly by the fingers. The force is in the direction you would push with your palm. The force on a negative charge is in exactly the opposite direction to that on a positive charge. Because the force is always perpendicular to the velocity vector, a pure magnetic field will not accelerate a charged particle in a single direction, however will produce circular or helical motion (a concept explored in more detail in future sections). It is important to note that magnetic field will not exert a force on a static electric charge. These two observations are in keeping with the rule that <span>magnetic fields do no </span>work<span>.</span>
Answer:
Explanation:
b = b₀ cos ω t
When t = 0 , magnetic field will be b₀ and positive or directed into the page . This is the maximum value of magnetic field. As times goes ahead , magnetic field decreases so magnetic flux decreases . The induced emf or current will be such that it will opposes this reduction of magnetic field. Hence , current in clockwise direction will be generated in the coil which will generate magnetic flux into the paper.
In this way current will be induced clockwise.
You have to decrease the length of the pendulum by 4 times in order to make the clock go 2 times faster
<span>Option C, are those that have the same number of protons in the nucleus. The atoms isotopes are atom that belongs to the same element, they are inside the periodic table and its nucleus has a different quantity of neutrons.</span>