To solve this problem, we use the equation:
<span>d = (v^2 - v0^2) /
2a</span>
where,
d = distance of collapse
v0 = initial velocity = 101 km / h = 28.06 m / s
v = final velocity = 0
a = acceleration = - 300 m / s^2
d = (-28.06 m / s)^2 / (2 * - 300 m / s^2)
<span>d = 1.31 m</span>
The temperature of the air above it
Answer:
Instantaneous speed means speed at any instant
that means Speed is changing with time
You know speed is distance/time
So that means distance is also changing with time
So we take infinitesimal small distance per infinitesimal small time As we assume speed is constant in infinitesimal small time dt
So, we take speed = ds/dt
ds = infinitesimal small distance
dt = infinitesimal small time
As its ratio is equal to speed at any instant
Note : We are taking infinitesimal small distance
But :) we are taking infinitesimal small time also
As you know if denominator is small fraction is large So fraction always give large value
So it's not O ( this makes confuse to most of students)
So, thanks
Good question
Keep thinking like this :)
Answer: Mercury, Mars, Venus, Earth, Neptune, Uranus, Saturn, and Jupiter.
Explanation:
That's all of the planets if you need them. Hope this helps!
(a) The acceleration of the system is determined as 1.58 m/s².
(b) The relative weight of P is pounds is determined as 0.14 lb.
<h3>
Acceleration of the system</h3>
The acceleration of the system is calculated as follows;
W - T = m₂a --- (1)
T = m₁a ----(2)
μmgsinθ - m₁a = m₂a
(0.3 x 3 x 9.8 x sin40) - (0.4 + 0.2)a = 3a
5.67 - 0.6a = 3a
5.67 = 3.6a
a = 5.67/3.6
a = 1.58 m/s²
<h3>
Relative Weight of P</h3>
W = ma
W = 0.4 x 1.58
W = 0.632 N = 0.14 lb
Learn more about weight here: brainly.com/question/2337612
#SPJ1