Answer:
21 m
Explanation:
The motion of the frog is a uniform motion (constant speed), therefore we can find the distance travelled by using

where
d is the distance covered
v is the speed
t is the time
The frog in this problem has a speed of
v = 2.1 m/s
and therefore, after t = 10 s, the distance it covered is

Answer:
331.75 V
Explanation:
Given:
Number of turns of the coil, N = 40 turns
Area, A = 0.06 m²
Magnetic Field, B = 0.4 T
Frequency, f = 55 Hz
Maximum induce emf, E₀ = NABω
but ω = 2πf
Maximum induce emf, E₀ = NAB(2πf₀)
Maximum induce emf, E₀ = 2πNABf₀
Where;
N is number of turns of the coil
A is area
B is magnetic field
ω is the angular velocity
f is the frequency
E₀ = 2 × π × 40 × 0.06 × 0.4 × 55
E₀ = 342.81 V
The maximum induced emf is 331.75 V
consider east-west direction along X-axis and north-south direction along Y-axis
= velocity of migrating robin relative to air = 12 j m/s
(where "j" is unit vector in Y-direction)
= velocity of air relative to ground = 6.3 i m/s
(where "i" is unit vector in X-direction)
= velocity of migrating robin relative to ground = ?
using the equation
=
+ 
= 12 j + 6.3 i
= 6.3 i + 12 j
magnitude : sqrt((6.3)² + (12)²) = 13.6 m/s
direction : tan⁻¹(12/6.3) = 62.3 deg north of east
Answer:
B) 20N.s is the correct answer
Explanation:
The formula for the impulse is given as:
Impulse = change in momentum
Impulse = mass × change in speed
Impulse = m × ΔV
Given:
initial speed = 40m/s
Final speed = -60 m/s (Since the the ball will now move in the opposite direction after hitting the bat, the speed is negative)
mass = 0.20 kg
Thus, we have
Impulse = 0.20 × (40m/s - (-60)m/s)
Impulse = 0.20 × 100 = 20 kg-m/s or 20 N.s
Well, the acceleration is the difference of speeds divided by the time period.

.
One rev/s is

, so our final result is

.