made from pure metals . . . no;
they've been made from all kinds of weird compounds and alloys.
conduct electricity with zero resistance . . . yes;
that's why they're called "superconductors".
produce a strong magnetic field . . . possible, but not because it's a superconductor;
just like any other conductor, the magnetic field depends on the current that's flowing in the conductor.
no loss of energy in the transfer of electricity . . .
there's no loss of energy in the current flowing in the superconductor;
but if you tried to transfer the current out of the superconductor into
something else, then there would be some loss.
Answer:
A. Gamma decay
Explanation:
A form of nuclear decay in which the atomic number is unchanged is a gamma decay.
The atom has undergone a gamma decay.
In a gamma decay, no changes occur to the mass and atomic number of the substance.
- Gamma rays have zero atomic and mass numbers.
- When they cause decay, they cause no change to the mass and atomic numbers.
- They simply produce gamma rays during such reactions and these rays are very energetic.
Answer:
<h2>
d₂ = 3d</h2><h2>
The diameter of the second wire is 3 times that of the initial wire.</h2>
Explanation:
Using the formula for calculating the resistivity of an object to find the diameter.
Resistivity P = RA/L
R is the resistance of the material
A is the cross sectional area
L is the length of the material
Since A = πd²/4
P = R( πd²/4)/L
P = Rπd²/4L ... 1
If the second wire of the same material and length is found to have resistance R/9, the resistivity of the second material will be;
P₂ = (R/9)A₂/L₂
P₂ = (R/9)(πd₂²/4)/L₂
P₂ = (Rπd₂²/36)/L₂
P₂ = (Rπd₂²)/36L₂
Since the length and resistivity are the same;
P = P₂ and L =L₂
Equating 1 and 2;
Rπd²/4L = (Rπd₂²)/36L₂
Rπd²/4L = (Rπd₂²)/36L
d² = d₂²/9
d₂² = 9d²
Taking the square root of both sides;
√d₂² = √9d²
d₂ = 3d
Therefore the diameter of the second wire is 3 times that of the initial wire
1) The total mechanical energy of the rock is:

where U is the gravitational potential energy and K the kinetic energy.
Initially, the kinetic energy is zero (because the rock starts from rest, so its speed is zero), and the total mechanical energy of the rock is just gravitational potential energy. This is equal to

where

is the mass,

is the gravitational acceleration and

is the height.
Putting the numbers in, we find the potential energy

2) Just before hitting the ground, the potential energy U is zero (because now h=0), and all the potential energy of the rock converted into kinetic energy, which is equal to:

where v is the speed of the rock just before hitting the ground. Since the mechanical energy of the rock must be conserved, then the kinetic energy K before hitting the ground must be equal to the initial potential energy U of the rock:

3) For the work-energy theorem, the work W done by the gravitational force on the rock is equal to the variation of kinetic energy of the rock, which is: