S=Vt
110=V(72)
110/72=V
V=1.527m/s
Answer:
The tangential velocity of a rotating object is:
v = r*w
where r is the radius, and w is the angular velocity.
w = 2*pi*f
where f is the frequency.
We know that the record plater does 11 revolutions in 20 seconds, then it does:
11 rev/20s = 0.55 rev/s = f
then we have:
w = 2*pi*0.55 s^-1 = 2*3.14*0.55 s^-1 = 3.454 s^-1
The radius of a record player is really variable, it is around 10 inches, so i will use r = 10in, which is the rotating part of the record player.
then the tangential velocity is:
v = 10in*3.454 s^-1 = 34.54 in/s
Answer:
h
Explanation:
Coulomb's law, or Coulomb's inverse-square law, is an experimental law[1] of physics that quantifies the amount of force between two stationary, electrically charged particles. The electric force between charged bodies at rest is conventionally called electrostatic force or Coulomb force.[2] The law was first discovered in 1785 by French physicist Charles-Augustin de Coulomb, hence the name. Coulomb's law was essential to the development of the theory of electromagnetism, maybe even its starting point,[1] as it made it possible to discuss the quantity of electric charge in a meaningful way.[3]
The law states that the magnitude of the electrostatic force of attraction or repulsion between two point charges is directly proportional to the product of the magnitudes of charges and inversely proportional to the square of the distance between them,[4]
{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}{\displaystyle F=k_{\text{e}}{\frac {q_{1}q_{2}}{r^{2}}}}
Here, ke is Coulomb's constant (ke ≈ 8.988×109 N⋅m2⋅C−2),[1] q1 and q2 are the signed magnitudes of the charges, and the scalar r is the distance between the charges.
The force is along the straight line joining the two charges. If the charges have the same sign, the electrostatic force between them is repulsive; if they have different signs, the force between them is attractive.
Being an inverse-square law, the law is analogous to Isaac Newton's inverse-square law of universal gravitation, but gravitational forces are always attractive, while electrostatic forces can be attractive or repulsive.[2] Coulomb's law can be used to derive Gauss's law, and vice versa. In the case of a single stationary point charge, the two laws are equivalent, expressing the same physical law in different ways.[5] The law has been tested extensively, and observations have upheld the law on the scale from 10−16 m to 108 m.[5]
Answer:
The answer to the question is
The ball will go 0.14 meters high if the gun is aimed vertically
Explanation:
The energy in the spring → Energy, E = 
Where E = energy in the spring
k = Spring constant
x = Spring compression or stretch
Therefore E = 
The spring energy is transferred to the ball as kinetic energy based on the first law of thermodynamics which states that energy is neither created nor destroyed
Kinetic energy = KE = 
From which v =
=
= 1.66 m/s
from v² =u² - 2·a·S
Where v = final velocity = 0 m/s
u = initial velocity = 1.66 m/s
a = g = Acceleration due to gravity
S = height
Therefore 0 = 1.66² - 2×9.81×S
or S = 1.66² ÷ (2×9.81) = 0.14 m
Answer: q=5.70 x 10^13 C
Explanation:
gravitational attraction = electrostatic repulsion GMm/d^2 = kQ^2/d^2 as you can see the d^2 cancel out. that is why lunar distance is irrelevant. G is the universal gravitational constant = 6.67 x 10^-11 m^3 / kgs^2 M is earth's mass = 5.972 × 10^24 kg m is moon's mass = 7.342×10^22 kg Q is charge on earth and moon. k is coulomb's constant = 9 x10^9 N m^2 /C^2 On solving equation for Q. Q = sqrt (GMm/k) = sqrt ( 6.67 x 10^-11 x 5.972 x 10^24 * 7.342×10^22 / 9 x10^9) = 5.70 x 10^13 C