Answer:
ork out which of the displacement (S), initial velocity (U), acceleration (A) and time (T) you have to solve for final velocity (V).
If you have U, A and T, use V = U + AT.
If you have S, U and T, use V = 2(S/T) - U.
If you have S, U and A, use V = SQRT(U2 + 2AS)
Answer:
2FeBr3 + 3Na2S ➡️ Fe2S3 + 6NaBr
Answer:
That would be hydrogen and helium! :)
Newton's first law of motion states that an object at rest will remain at rest unless an unbalanced force acts on it. If you apply balanced forces on the object there would be no net force. The body does not accelerate but instead stays at rest.
Another way to look at this problem is to use Newton's second law of motion. The first law states that
, where
is the acceleration
is the net force and
is the mass of the object.
When F is zero, the acceleration of the object is zero. This means that if the object had a velocity of zero before the balanced forces started acting, the velocity will stay at zero after the balanced forces begin to act. If the object was moving at a constant velocity before the balanced forces started acting on it, it would continue at that constant velocity after the balanced forces begin to act.
Answer:
38 kg/m³
0.038 g/mL
Explanation:
Volume of a cube is the side length cubed.
V = s³
Given s = 0.65 m:
V = (0.65 m)³
V ≈ 0.275 m³
The mass is 10.5 kg. The density is the mass divided by volume:
ρ = (10.5 kg) / (0.275 m³)
ρ ≈ 38 kg/m³
Or:
ρ ≈ 0.038 g/mL