Very low gives free energy
____NaNO3 + ___PbO --> ___Pb(NO3)2 + ___Na[2]O
To balace the eqaution, you need to have the same number of atoms for each element on both the reactant (left) and product (right) side.
To start off, you wanna know the number of atoms in each element on both sides, so take it apart:
[reactants] [product]
Na- 1 Na- 2
N- 1 N- 2(it's 2 because the the subscript [2] is outside of the parenthesis)
O- 4 O- 7 (same reason as above)
Pb- 1 Pb- 1
Na is not balanced out, so add a coefficient to make it the same on both sides.In this case, multiply by 2:
2NaNO3
Now Na is balanced, but the N and O are also effected by this, so they also have to be multiplied by 2 and they become:
Na- 2 Na- 2
N- 2 N- 2 (it balanced out)
O- 7 (coefficient times subscript, plus lone O) O- 7 (balanced out)
Pb was already balanced so no need to mess with it, just put a 1 where needed (it doesn't change anything).
Now to put it back together, it will look like this:
2NaNO3 + 1PbO --> 1Pb(NO3)2 + 1Na[2]O
5mg in liter is 5 ppm
Explanation: 1 ppm is one part per million.
1 ppm is 1 mg is one part of million from 1 kg = 1000 000 mg
1 litre water is 1. Kg.
Answer:
Laura can look for a transparent and translucent liquid and hence determine which beaker has water and which has solution
Explanation:
Pure water is a compound that is transparent in color. However, a solution is a liquid mixture comprising of a solvent or a solute. The atoms of solute occupy space between the atoms of solvent and hence are said to dissolve in it. Water can be a solvent.
Thus, if the beaker has a transparent liquid in it, then it would be pure water while a beaker having a translucent liquid, then it would be a solution